

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 2003, 22, 1701-1716.	3.0	850
2	Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 2018, 8, 972-980.	18.8	776
3	Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics, 1996, 12, 185-194.	3.8	616
4	Pollen-based continental climate reconstructions at 6 and 21Âka: a global synthesis. Climate Dynamics, 2011, 37, 775-802.	3.8	536
5	The human imperative of stabilizing global climate change at 1.5°C. Science, 2019, 365, .	12.6	498
6	A 140,000-year continental climate reconstruction from two European pollen records. Nature, 1989, 338, 309-313.	27.8	444
7	Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 80, 49-69.	2.3	441
8	Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. Journal of Biogeography, 2000, 27, 635-664.	3.0	382
9	Climatic Reconstruction in Europe for 18,000 YR B.P. from Pollen Data. Quaternary Research, 1998, 49, 183-196.	1.7	381
10	Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics, 2002, 19, 95-105.	3.8	381
11	Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters, 1999, 26, 859-862.	4.0	374
12	Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews, 2003, 22, 1589-1596.	3.0	316
13	Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature, 1994, 371, 503-506.	27.8	313
14	Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new â€~n= 677' data base and its application for quantitative palaeoceanographic reconstruction. Journal of Quaternary Science, 2001, 16, 681-698.	2.1	303
15	Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years. Journal of Biogeography, 1998, 25, 1007-1027.	3.0	301
16	Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dynamics, 1999, 15, 823-856.	3.8	300
17	Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. Journal of Biogeography, 2000, 27, 609-620.	3.0	287
18	The climate of Europe 6000 years ago. Climate Dynamics, 1996, 13, 1-9.	3.8	269

#	Article	IF	CITATIONS
19	Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature, 1990, 346, 347-349.	27.8	263
20	European summer temperatures since Roman times. Environmental Research Letters, 2016, 11, 024001.	5.2	260
21	Presentâ€day and midâ€Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography, 1998, 25, 1029-1053.	3.0	245
22	Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia): Holocene variability of the East Asian monsoon. Quaternary Research, 2006, 65, 411-420.	1.7	235
23	Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Climate Dynamics, 1999, 15, 857-874.	3.8	234
24	Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Climate Dynamics, 2007, 29, 211-229.	3.8	233
25	Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr bp. Journal of Biogeography, 2000, 27, 621-634.	3.0	229
26	Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience, 2015, 8, 784-788.	12.9	220
27	Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science, 2016, 354, 465-468.	12.6	209
28	Reconstruction of Holocene Precipitation Patterns in Europe Using Pollen and Lake-Level Data. Quaternary Research, 1993, 40, 139-149.	1.7	199
29	The climate in Western Europe during the last Glacial/Interglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 103, 73-93.	2.3	198
30	Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature, 1992, 360, 658-660.	27.8	177
31	A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest?savanna transect in southeastern Cameroon. Global and Planetary Change, 2005, 45, 277-293.	3.5	177
32	Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea–surface temperatures and pollen-based reconstructions. Quaternary Science Reviews, 2006, 25, 2082-2102.	3.0	170
33	Grass water stress estimated from phytoliths in West Africa. Journal of Biogeography, 2005, 32, 311-327.	3.0	163
34	Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global and Planetary Change, 2008, 61, 209-224.	3.5	162
35	Environmental Roots of the Late Bronze Age Crisis. PLoS ONE, 2013, 8, e71004.	2.5	159
36	Holocene climatic change in Morocco: a quantitative reconstruction from pollen data. Climate Dynamics, 1998, 14, 883-890.	3.8	158

#	Article	IF	CITATIONS
37	Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 143, 73-85.	2.3	155
38	A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144, 183-201.	2.3	149
39	High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlantic. Climate Dynamics, 1996, 12, 701-709.	3.8	141
40	Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Climate Dynamics, 1999, 15, 227-240.	3.8	140
41	The climate and biomes of Europe at 6000yr BP. Quaternary Science Reviews, 1998, 17, 659-668.	3.0	138
42	Dinoflagellate cyst distribution in high-latitude marine environments and quantitative reconstruction of sea-surface salinity, temperature, and seasonality. Canadian Journal of Earth Sciences, 1994, 31, 48-62.	1.3	136
43	Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152, 15-36.	2.3	136
44	Mediterranean drought fluctuation during the last 500Âyears based on tree-ring data. Climate Dynamics, 2008, 31, 227-245.	3.8	131
45	Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nature Geoscience, 2017, 10, 123-128.	12.9	130
46	The climate in Europe during the Eemian: a multi-method approach using pollen data. Quaternary Science Reviews, 2008, 27, 2303-2315.	3.0	126
47	Improving past sea surface temperature estimates based on planktonic fossil faunas. Paleoceanography, 1998, 13, 272-283.	3.0	125
48	The Last Glacial Maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Climate Dynamics, 2001, 17, 23-43.	3.8	123
49	Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Science Reviews, 2020, 210, 103384.	9.1	123
50	Quantitative Reconstruction of Younger Dryas to Mid-Holocene Paleoclimates at Le Locle, Swiss Jura, Using Pollen and Lake-Level Data. Quaternary Research, 2001, 56, 170-180.	1.7	122
51	Abrupt resumption of the African Monsoon at the Younger Dryas—Holocene climatic transition. Quaternary Science Reviews, 2007, 26, 690-704.	3.0	115
52	Climatic controls on Holocene lake-level changes in Europe. Climate Dynamics, 1993, 8, 189-200.	3.8	112
53	Termination of the Last Glaciation in the Iberian Peninsula Inferred from the Pollen Sequence of Quintanar de la Sierra. Quaternary Research, 1997, 48, 205-214.	1.7	109
54	Last-millennium summer-temperature variations in western Europe based on proxy data. Holocene, 2005, 15, 489-500.	1.7	109

#	Article	IF	CITATIONS
55	Growing Season Temperatures in Europe and Climate Forcings Over the Past 1400 Years. PLoS ONE, 2010, 5, e9972.	2.5	109
56	Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics, 1996, 12, 185-194.	3.8	107
57	Chapter 1 Mediterranean climate variability over the last centuries: A review. Developments in Earth and Environmental Sciences, 2006, 4, 27-148.	0.1	105
58	Late Quaternary Climatic Change in France Estimated from Multivariate Pollen Time Series. Quaternary Research, 1987, 28, 100-118.	1.7	104
59	Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region. Ecological Modelling, 2000, 127, 119-140.	2.5	104
60	Reconstruction of Precipitation in Morocco Since 1100 A.D. Based on Cedrus Atlantica Tree-Ring Widths. Quaternary Research, 1990, 33, 337-351.	1.7	102
61	The European Modern Pollen Database (EMPD) project. Vegetation History and Archaeobotany, 2013, 22, 521-530.	2.1	101
62	Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Global and Planetary Change, 2003, 36, 277-294.	3.5	99
63	Quantitative estimates of full glacial temperatures in equatorial Africa from palynological data*. Climate Dynamics, 1992, 6, 251-257.	3.8	91
64	A method to determine warm and cool steppe biomes from pollen data; application to the Mediterranean and Kazakhstan regions. , 1998, 13, 335-344.		90
65	Recent contributions to the climatology of the last glacial-interglacial cycle based on French pollen sequences. Quaternary Science Reviews, 1992, 11, 439-448.	3.0	88
66	Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nußloch loess sequence (Rhine Valley, Germany). Climate Dynamics, 2005, 25, 315-327.	3.8	87
67	Sensitivity of African biomes to changes in the precipitation regime. Global Ecology and Biogeography, 2006, 15, 258-270.	5.8	86
68	Climate in northern Eurasia 6000 years ago reconstructed from pollen data. Earth and Planetary Science Letters, 1999, 171, 635-645.	4.4	85
69	Chapter Thirteen Transfer Functions: Methods for Quantitative Paleoceanography Based on Microfossils. Developments in Marine Geology, 2007, 1, 523-563.	0.4	84
70	Mid-Holocene climate change in Europe: a data-model comparison. Climate of the Past, 2007, 3, 499-512.	3.4	83
71	Pollen-Derived Rainfall and Temperature Estimates from Lake Tanganyika and Their Implication for Late Pleistocene Water Levels. Quaternary Research, 1993, 40, 343-350.	1.7	82
72	Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach. Ecology Letters, 2011, 14, 522-536.	6.4	80

#	Article	IF	CITATIONS
73	Climate of East Africa 6000 14C Yr B.P. as Inferred from Pollen Data. Quaternary Research, 2000, 54, 90-101.	1.7	79
74	How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison. Climate of the Past, 2007, 3, 331-339.	3.4	79
75	Wet phases in tropical southern Africa during the last glacial period. Geophysical Research Letters, 2006, 33, .	4.0	78
76	Sensitivity of African biomes to changes in the precipitation regime. Global Ecology and Biogeography, 2006, 15, 258-270.	5.8	73
77	Millennium-long summer temperature variations in the European Alps as reconstructed from tree rings. Climate of the Past, 2010, 6, 379-400.	3.4	72
78	A data-based re-appraisal of the terrestrial carbon budget at the last glacial maximum. Global and Planetary Change, 1993, 8, 189-201.	3.5	70
79	Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9720-9724.	7.1	69
80	Reconstruction and paleoclimatic interpretation of Holocene lake-level changes in Lac de Saint-Léger, Haute-Provence, southeast France. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 136, 231-258.	2.3	67
81	The 4.2 ka BP event in the Levant. Climate of the Past, 2018, 14, 1529-1542.	3.4	64
82	Some mechanisms of mid-Holocene climate change in Europe, inferred from comparing PMIP models to data. Climate Dynamics, 2004, 23, 79-98.	3.8	62
83	Is spatial autocorrelation introducing biases in the apparent accuracy of paleoclimatic reconstructions?. Quaternary Science Reviews, 2011, 30, 1965-1972.	3.0	60
84	The influence of decision-making in tree ring-based climate reconstructions. Nature Communications, 2021, 12, 3411.	12.8	59
85	Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Clobal and Planetary Change, 2000, 26, 405-421.	3.5	58
86	The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation. Global and Planetary Change, 2012, 84-85, 35-47.	3.5	57
87	Drought and societal collapse 3200 years ago in the Eastern Mediterranean: a review. Wiley Interdisciplinary Reviews: Climate Change, 2015, 6, 369-382.	8.1	56
88	Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France). Review of Palaeobotany and Palynology, 2004, 129, 213-228.	1.5	54
89	An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semiâ€arid regions. Boreas, 2010, 39, 145-153.	2.4	54
90	Late and Postglacial Paleoenvironments of the Gulf of St. Lawrence: Marine and Terrestrial Palynological Evidence. Géographie Physique Et Quaternaire, 1993, 47, 167-180.	0.2	52

#	Article	IF	CITATIONS
91	Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model. Canadian Journal of Forest Research, 2004, 34, 888-898.	1.7	52
92	Estimating changes in terrestrial vegetation and carbon storage. Quaternary Science Reviews, 1998, 17, 719-735.	3.0	51
93	Early urban impact on Mediterranean coastal environments. Scientific Reports, 2013, 3, 3540.	3.3	50
94	Data-model comparison using fuzzy logic in paleoclimatology. Climate Dynamics, 1999, 15, 569-581.	3.8	49
95	Quantitative reconstructions of annual rainfall in Africa 6000 years ago: Model-data comparison. Journal of Geophysical Research, 2006, 111, .	3.3	47
96	Definition of grassland biomes from phytoliths in West Africa. Journal of Biogeography, 2008, 35, 2039-2048.	3.0	47
97	A few prospective ideas on climate reconstruction: from a statistical single proxy approach towards a multi-proxy and dynamical approach. Climate of the Past, 2009, 5, 571-583.	3.4	47
98	Postglacial climate in the St. Lawrence lowlands, southern Québec: pollen and lake-level evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193, 51-72.	2.3	46
99	ARMA techniques for modelling tree-ring response to climate and for reconstructing variations of paleoclimates. Ecological Modelling, 1986, 33, 149-171.	2.5	43
100	Parameterization of a process-based tree-growth model: Comparison of optimization, MCMC and Particle Filtering algorithms. Environmental Modelling and Software, 2008, 23, 1280-1288.	4.5	43
101	The Mediterranean vegetation: what if the atmospheric CO2 increased?. Landscape Ecology, 2001, 16, 667-675.	4.2	42
102	Reconstruction of the Grande Pile Eemian using inverse modeling of biomes and δ13C. Quaternary Science Reviews, 2006, 25, 2806-2819.	3.0	42
103	Using a biogeochemistry model in simulating forests productivity responses to climatic change and [CO2] increase: example of Pinus halepensis in Provence (south-east France). Ecological Modelling, 2003, 166, 239-255.	2.5	40
104	Reconstruction and palaeoclimatic interpretation of mid-Holocene vegetation and lake-level changes at Saint-Jorioz, Lake Annecy, French Pre-Alps. Holocene, 2003, 13, 265-275.	1.7	40
105	Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Climate Dynamics, 1992, 6, 259-264.	3.8	39
106	A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model. Climate Dynamics, 2010, 35, 371-389.	3.8	39
107	Preserving long-term fluctuations in standardisation of tree-ring series by the adaptative regional growth curve (ARGC). Dendrochronologia, 2010, 28, 1-12.	2.2	39
108	Vegetation and climate since the last interglacial in the Vienne area (France). Global and Planetary Change, 1999, 20, 1-17.	3.5	38

#	Article	IF	CITATIONS
109	Risky future for Mediterranean forests unless they undergo extreme carbon fertilization. Global Change Biology, 2017, 23, 2915-2927.	9.5	38
110	Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series. Biogeosciences, 2015, 12, 3695-3712.	3.3	37
111	Bioclimatic model of tree radial growth: application to the French Mediterranean Aleppo pine forests. Trees - Structure and Function, 2005, 19, 162-176.	1.9	36
112	The extrapolation of recent climatological series with spectral canonical regression. Journal of Climatology, 1985, 5, 325-335.	0.7	35
113	Middle Pleistocene deposits at La Côte, Val-de-Lans, Isère department, France: plant macrofossil, palynological and fossil insect investigations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 159, 53-83.	2.3	35
114	Holocene altitudinal shifts in vegetation belts and environmental changes in the Sierra Madre Occidental, Northwestern Mexico, based on modern and fossil pollen data. Review of Palaeobotany and Palynology, 2008, 151, 1-20.	1.5	35
115	Methodological basis for quantitative reconstruction of air temperature and sunshine from pollen assemblages in Arctic Canada and Greenland. Quaternary Science Reviews, 2008, 27, 1197-1216.	3.0	34
116	Tentative palaeoclimatic reconstruction linking pollen and sedimentology in La Grande Pile (Vosges,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
117	Simulating the Holocene Lake-Level Record of Lake Bysjön, Southern Sweden. Quaternary Research, 1998, 49, 62-71.	1.7	32
118	Long-term variations of monthly insolation as related to climatic changes. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1981, 70, 748-758.	1.3	31
119	Climatic effect of atmospheric CO2 doubling on radial tree growth in south eastern France. Journal of Biogeography, 2003, 24, 857-864.	3.0	31
120	Solar and anthropogenic imprints on Lake Masoko (southern Tanzania) during the last 500Âyears. Journal of Paleolimnology, 2007, 37, 475-490.	1.6	31
121	Back at the last interglacial. Nature, 1997, 388, 25-27.	27.8	30
122	Long-term summer (AD751-2008) temperature fluctuation in the French Alps based on tree-ring data. Boreas, 2011, 40, 351-366.	2.4	30
123	Historical droughts in Mediterranean regions during the last 500 years: a data/model approach. Climate of the Past, 2007, 3, 355-366.	3.4	29
124	Changes of the potential distribution area of French Mediterranean forests under global warming. Biogeosciences, 2008, 5, 1493-1504.	3.3	29
125	MAIDENiso: a multiproxy biophysical model of tree-ring width and oxygen and carbon isotopes. Canadian Journal of Forest Research, 2012, 42, 1697-1713.	1.7	27

126Quantitative climate reconstruction from pollen data in the Grand Duchy of Luxembourg since 15 000
yr BP. Journal of Quaternary Science, 1992, 7, 303-309.2.126

#	Article	IF	CITATIONS
127	Bayesian multiproxy temperature reconstruction with black spruce ring widths and stable isotopes from the northern Quebec taiga. Climate Dynamics, 2017, 49, 4107-4119.	3.8	26
128	Spring temperature variability over Turkey since 1800â€⁻CE reconstructed from a broad network of tree-ring data. Climate of the Past, 2017, 13, 1-15.	3.4	25
129	Palynological evidence for gradual vegetation and climate changes during the African Humid Period termination at 13°N from a Mega-Lake Chad sedimentary sequence. Climate of the Past, 2013, 9, 223-241.	3.4	24
130	Spatial analysis of black spruce (<i>Picea mariana</i> (Mill.) B.S.P.) radial growth response to climate in northern Québec – Labrador Peninsula, Canada. Canadian Journal of Forest Research, 2015, 45, 343-352.	1.7	24
131	Augmentation de productivité du chêne pubescent en région méditerranéenne française. Annales Des Sciences Forestières, 1999, 56, 211-219.	1.2	24
132	Reconstruction of past terrestrial carbon storage in the Northern Hemisphere from the Osnabrück Biosphere Model and palaeodata. Climate Research, 1995, 5, 107-118.	1.1	24
133	Biomization and quantitative climate reconstruction techniques in northwestern Mexico—With an application to four Holocene pollen sequences. Global and Planetary Change, 2008, 61, 242-266.	3.5	23
134	East Asian Monsoon and paleoclimatic data analysis: a vegetation point of view. Climate of the Past, 2008, 4, 137-145.	3.4	23
135	An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO ₂ concentrations. Biogeosciences, 2014, 11, 3245-3258.	3.3	23
136	Simulated effects of a seasonal precipitation change on the vegetation in tropical Africa. Climate of the Past, 2010, 6, 169-178.	3.4	22
137	The Vegetation Carbon Storage Variation in Europe Since 6000 BP: Reconstruction from Pollen. Journal of Biogeography, 1994, 21, 19.	3.0	21
138	Temporal and spatial variations of terrestrial biomes and carbon storage since 13 000 yr BP in Europe: Reconstruction from pollen data and statistical models. Water, Air, and Soil Pollution, 1995, 82, 375-390.	2.4	21
139	A millennial multi-proxy reconstruction of summer PDSI for Southern South America. Climate of the Past, 2011, 7, 957-974.	3.4	21
140	The Mediterranean Basin and Southern Europe in a warmer world: what can we learn from the past?. Frontiers in Earth Science, 2015, 3, .	1.8	21
141	Hydrological reconstruction from tree-ring multi-proxies over the last two centuries at the Caniapiscau Reservoir, northern Québec, Canada. Journal of Hydrology, 2014, 513, 435-445.	5.4	20
142	Modelling tree ring cellulose <i>l'</i> ¹⁸ O variations in two temperature-sensitive tree species from North and South America. Climate of the Past, 2017, 13, 1515-1526.	3.4	20
143	A probabilistic approach to the use of pollen indicators for plant attributes and biomes: an application to European vegetation at 0 and 6Âka. Global Ecology and Biogeography, 2003, 12, 103-118.	5.8	19
144	QSR Correspondence "ls spatial autocorrelation introducing biases in the apparent accuracy of palaeoclimatic reconstructions?―Reply to Telford and Birks. Quaternary Science Reviews, 2011, 30, 3214-3216.	3.0	19

#	Article	IF	CITATIONS
145	Vulnerability of Mediterranean Ecosystems to Long-Term Changes along the Coast of Israel. PLoS ONE, 2014, 9, e102090.	2.5	19
146	Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest. Biogeosciences, 2017, 14, 4851-4866.	3.3	18
147	Reaching the human scale: A spatial and temporal downscaling approach to the archaeological implications of paleoclimate data. Journal of Archaeological Science, 2018, 93, 54-67.	2.4	18
148	Transect de pluie pollinique et étagement de la végétation dans le massif du Taillefer (Isère, France). Géographie Physique Et Quaternaire, 0, 52, 209-218.	0.2	18
149	Climate reconstruction from pollen and Î ¹³ C records using inverse vegetation modeling – Implication for past and future climates. Climate of the Past, 2009, 5, 147-156.	3.4	17
150	Quantitative Reconstruction of Sea-Surface Conditions, Seasonal Extent of Sea-Ice Cover and Meltwater Discharges in High Latitude Marine Environments from Dinoflagellate Cyst Assemblages. , 1993, , 611-621.		16
151	Reconstruction of seasonal temperatures in Central Canada since A.D. 1700 and detection of the 18.6- and 22-year signals. Climatic Change, 1987, 10, 249-268.	3.6	15
152	From paleoclimate variables to prehistoric agriculture: Using a process-based agro-ecosystem model to simulate the impacts of Holocene climate change on potential agricultural productivity in Provence, France. Quaternary International, 2019, 501, 303-316.	1.5	14
153	New coupled model used inversely for reconstructing past terrestrial carbon storage from pollen data: validation of model using modern data. Global Change Biology, 2009, 15, 82-96.	9.5	13
154	Middle Pleistocene temperate deposits at Dingé, Ille-et-Vilaine, northwest France: pollen, plant and insect macrofossil analysis. Journal of Quaternary Science, 1997, 12, 309-331.	2.1	12
155	Radial tree-growth modelling with fuzzy regression. Canadian Journal of Forest Research, 1998, 28, 1249-1260.	1.7	11
156	Elevationâ€induced climate change as a dominant factor causing the late Miocene <scp><scp>C₄</scp> </scp> plant expansion in the Himalayan foreland. Global Change Biology, 2014, 20, 1461-1472.	9.5	11
157	Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe. Climate of the Past, 2020, 16, 1043-1059.	3.4	11
158	Quantitative reconstruction of mid-Holocene climatic variations in the northern Alpine foreland based on Lake Morat (Swiss Plateau) and Lake Annecy (French Pre-Alps) data. Boreas, 2005, 34, 434-444.	2.4	10
159	Regional paleoclimates and local consequences: Integrating GIS analysis of diachronic settlement patterns and process-based agroecosystem modeling of potential agricultural productivity in Provence (France). PLoS ONE, 2018, 13, e0207622.	2.5	10
160	A Method for Palaeoclimatic Reconstruction in Palynology Based on Multivariate Time-Series Analysis. Géographie Physique Et Quaternaire, 0, 39, 115-125.	0.2	10
161	Past and future carbon balance of European ecosystems from pollen data and climatic models simulations. Global and Planetary Change, 1998, 18, 189-200.	3.5	9
162	Variabilité des écosystèmes terrestres et du climat sur un cycle glaciaire–interglaciaire. Comptes Rendus - Geoscience, 2004, 336, 667-675.	1.2	9

#	Article	IF	CITATIONS
163	POLLEN METHODS AND STUDIES Use of Pollen as Climate Proxies. , 2007, , 2497-2508.		9
164	A robust spatial reconstruction of April to September temperature in Europe: Comparisons between the medieval period and the recent warming with a focus on extreme values. Global and Planetary Change, 2012, 84-85, 14-22.	3.5	9
165	The Lateglacial interstadial at the southeastern limit of the Sonoran Desert, Mexico: vegetation and climate reconstruction based on pollen sequences from Ciénega San Marcial and comparison with the subrecent record. Boreas, 2016, 45, 773-789.	2.4	9
166	The Montaigu Event: An Abrupt Climatic Change During the Early Wurm in Europe. , 1992, , 85-95.		9
167	The Variation of Terrestrial Carbon Storage at 6000 yr BP in Europe: Reconstruction from Pollen Data Using Two Empirical Biosphere Models. Journal of Biogeography, 1995, 22, 863.	3.0	8
168	POLLEN METHODS AND STUDIES Use of Pollen as Climate Proxies. , 2013, , 805-815.		8
169	Pollution fluorée et croissance radiale des conifères en Maurienne (Savoie, France). Annales Des Sciences Forestières, 1990, 47, 309-323.	1.2	8
170	An emerging paradigm: Process-based climate reconstructions. PAGES News, 2010, 18, 87-89.	0.1	8
171	The last climatic cycle in France: The diversity of records. Quaternary International, 1989, 3-4, 49-55.	1.5	7
172	An extended probabilistic approach of plant vital attributes: an application to European pollen records at 0 and 6Âka. Global Ecology and Biogeography, 2004, 13, 519-533.	5.8	7
173	Interactions between vegetation and climate variability: what are the lessons of models and paleovegetation data. Comptes Rendus - Geoscience, 2008, 340, 595-601.	1.2	7
174	Pollen-based climate reconstruction: Calibration of the vegetation–pollen processes. Ecological Modelling, 2012, 235-236, 81-94.	2.5	7
175	An objective methodology for potential vegetation reconstruction constrained by climate. Global and Planetary Change, 2013, 104, 7-22.	3.5	7
176	Underestimation of the Tambora effects in North American taiga ecosystems. Environmental Research Letters, 2018, 13, 034017.	5.2	7
177	Statistical Analyses of Biospherical Variability. , 1994, , 299-334.		7
178	Transfer functions. IOP Conference Series: Earth and Environmental Science, 2011, 14, 012008.	0.3	5
179	Geochemical and magnetic evidence of change from winter to summer rainfall regimes at 9.2 cal ka BP in northwestern Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465, 64-78.	2.3	5
180	Reconstructing and Modeling Past Changes in Terrestrial Primary Productivity. , 2001, , 479-498.		5

#	Article	IF	CITATIONS
181	15. Estimates of temperature and precipitation variations during the Eemian interglacial: New data from the grande pile record (GP XXI). Developments in Quaternary Sciences, 2007, , 231-238.	0.1	4
182	Testing the performance of dendroclimatic process-based models at global scale with the PAGES2k tree-ring width database. Climate Dynamics, 2021, 57, 2005-2020.	3.8	4
183	Mechanisms for European summer temperature response to solar forcing over the last millennium. Climate of the Past, 2012, 8, 1487-1495.	3.4	4
184	Predictive models of tree-growth: preliminary results in the French Alps. , 1998, , 109-120.		3
185	Analyse dendrochronologique des variations passées du régime hydro climatique au complexe de la grande rivière dans le Nord du Québec. Houille Blanche, 2007, 93, 70-77.	0.3	3
186	A fog forecasting method in a deeply embanked valley. Atmospheric Environment Part A General Topics, 1992, 26, 759-764.	1.3	2
187	A method of comparison of two close batches data: Application to analysis of fog formation causes. Geophysical Research Letters, 1993, 20, 1179-1182.	4.0	2
188	Preface "Climate change: from the geological past to the uncertain future – a symposium honouring André Berger". Climate of the Past, 2009, 5, 707-711.	3.4	2
189	Understanding the development of viticulture in Roman Gaul during and after the Roman climate optimum: The contribution of spatial analysis and agro-ecosystem modeling. Journal of Archaeological Science: Reports, 2021, 38, 103099.	0.5	2
190	Temporal and Spatial Variations of Terrestrial Biomes and Carbon Storage Since 13 000 yr BP in Europe: Reconstruction from Pollen Data and Statistical Models. , 1995, , 375-390.		2
191	Reconstruction of the abiotic characteristics of past biomes: An example from the last glacial-interglacial cycle in France. Ecoscience, 2000, 7, 491-500.	1.4	1
192	Postglacial Vegetation, Climate History and Land-Sea Interaction at Island Lake, Baie des Chaleurs, New Brunswick, as Documented by Palynological Analysis*. Géographie Physique Et Quaternaire, 2004, 58, 109-122.	0.2	1
193	A Reply to Marchant and Hooghiemstra. Quaternary Research, 2001, 56, 136-137.	1.7	0
194	Comment on: "Solar Minima, Earth's rotation and Little Ice Ages in the past and in the future. The North Atlantic–European case―(Mörner, 2010). Global and Planetary Change, 2011, 76, 220-221.	3.5	0
195	Le traitement statistique et l'interprétation de longues chroniques historiques d'indicateurs climatiques. Houille Blanche, 2002, 88, 121-125.	0.3	0
196	Corrigendum to Preface "Climate change: from the geological past to the uncertain future – a symposium honouring André Berger" published in Clim. Past, 5, 707–711, 2009. Climate of the Past, 2009, 5, 723-723.	3.4	0
197	25. Variations de la température et des sécheresses en région méditerranéenne depuis 1 000 ans. , 20 405-415.	12, ,	0
198	Air-Vegetation Interface: Pollen. Frontiers in Earth Sciences, 2021, , 151-155.	0.1	0

	J Guio	т	
#	Article	IF	CITATIONS
199	Vegetation-Atmosphere Interface: Tree Rings. Frontiers in Earth Sciences, 2021, , 197-203.	0.1	о