Thierry Dupre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11226220/publications.pdf Version: 2024-02-01

Τηιέρον Πίιδρε

#	Article	IF	CITATIONS
1	Comparison of Nutritional Status During the First Year After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obesity Surgery, 2014, 24, 276-283.	2.1	119
2	Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. Journal of Medical Genetics, 2017, 54, 843-851.	3.2	88
3	Congenital Disorders of Glycosylation Type Ig Is Defined by a Deficiency in Dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl Mannosyltransferase. Journal of Biological Chemistry, 2002, 277, 25815-25822.	3.4	87
4	Long-term Evolution of Nutritional Deficiencies After Gastric Bypass. Annals of Surgery, 2014, 259, 1104-1110.	4.2	81
5	A Deficiency in Dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl α3-Glucosyltransferase Defines a New Subtype of Congenital Disorders of Glycosylation. Journal of Biological Chemistry, 2003, 278, 9962-9971.	3.4	78
6	Living with HIV, Antiretroviral Treatment Experience and Tobacco Smoking: Results from a Multisite Cross-Sectional Study. Antiviral Therapy, 2008, 13, 389-398.	1.0	49
7	Serum Vitamin D Increases with Weight Loss in Obese Subjects 6ÂMonths After Roux-en-Y Gastric Bypass. Obesity Surgery, 2013, 23, 486-493.	2.1	38
8	A new insight into PMM2 mutations in the French population. Human Mutation, 2005, 25, 504-505.	2.5	37
9	Associations between serum lipids and breast cancer incidence and survival in the E3N prospective cohort study. Cancer Causes and Control, 2017, 28, 77-88.	1.8	34
10	Should PMM2-deficiency (CDG Ia) be searched in every case of unexplained hydrops fetalis?. Molecular Genetics and Metabolism, 2010, 101, 253-257.	1.1	32
11	Congenital Disorder of Glycosylation Ia with Deficient Phosphomannomutase Activity but Normal Plasma Glycoprotein Pattern. Clinical Chemistry, 2001, 47, 132-134.	3.2	31
12	A New Intronic Mutation in the DPM1 Gene Is Associated With a Milder Form of CDG Ie in Two French Siblings. Pediatric Research, 2006, 59, 835-839.	2.3	31
13	Complementarity of electrophoretic, mass spectrometric, and gene sequencing techniques for the diagnosis and characterization of congenital disorders of glycosylation. Electrophoresis, 2018, 39, 3123-3132.	2.4	29
14	Mono, di and tri-mannopyranosyl phosphates as mannose-1-phosphate prodrugs for potential CDG-la therapy. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 152-155.	2.2	28
15	The Compartmentalisation of Phosphorylated Free Oligosaccharides in Cells from a CDG Ig Patient Reveals a Novel ER-to-Cytosol Translocation Process. PLoS ONE, 2010, 5, e11675.	2.5	23
16	Red blood cell <scp>T</scp> homsenâ€ <scp>F</scp> riedenreich antigen expression and galectinâ€3 plasma concentrations in <i><scp>S</scp>treptococcus pneumoniae</i> –associated hemolytic uremic syndrome and hemolytic anemia. Transfusion, 2015, 55, 1563-1571.	1.6	22
17	CCDC115-CDG: A new rare and misleading inherited cause of liver disease. Molecular Genetics and Metabolism, 2018, 124, 228-235.	1.1	20
18	Abnormal Glycosylation of Red Cell Membrane Band 3 in the Congenital Disorder of Glycosylation Ig. Pediatric Research, 2003, 54, 224-229.	2.3	17

THIERRY DUPRE

#	Article	IF	CITATIONS
19	Expanding the Spectrum of PMM2-CDG Phenotype. JIMD Reports, 2011, 5, 123-125.	1.5	13
20	Increased Biosynthesis of Glycosphingolipids in Congenital Disorder of Glycosylation Ia (CDG-Ia) Fibroblasts. Pediatric Research, 2002, 52, 645-651.	2.3	12
21	PMM2 intronic branch-site mutations in CDG-la. Molecular Genetics and Metabolism, 2006, 87, 337-340.	1.1	12
22	Novel variants and clinical symptoms in four new ALG3 DG patients, review of the literature, and identification of AAGRPâ€ALG3 as a novel ALG3 variant with alanine and glycineâ€rich Nâ€terminus. Human Mutation, 2019, 40, 938-951.	2.5	12
23	Two-dimensional electrophoresis highlights haptoglobin beta chain as an additional biomarker of congenital disorders of glycosylation. Clinica Chimica Acta, 2017, 470, 70-74.	1.1	11
24	Serum bikunin is a biomarker of linkeropathies. Clinica Chimica Acta, 2018, 485, 178-180.	1.1	8
25	Wide clinical spectrum in ALG8-CDG: clues from molecular findings suggest an explanation for a milder phenotype in the first-described patient. Pediatric Research, 2019, 85, 384-389.	2.3	8
26	Expanding the phenotype of Xâ€ŀinked SSR4–CDG: Connective tissue implications. Human Mutation, 2021, 42, 142-149.	2.5	7
27	A mutation in SLC37A4 causes a dominantly inherited congenital disorder of glycosylation characterized by liver dysfunction. American Journal of Human Genetics, 2021, 108, 1040-1052.	6.2	7
28	MAN1B1-CDC: Three new individuals and associated biochemical profiles. Molecular Genetics and Metabolism Reports, 2021, 28, 100775.	1.1	6
29	Active site variants in STT3A cause a dominant type I congenital disorder of glycosylation with neuromusculoskeletal findings. American Journal of Human Genetics, 2021, 108, 2130-2144.	6.2	5
30	Impact of vitamin D supplementation model on the circulating levels of 25 (OH) D in Algerian children aged 1–23 months. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105487.	2.5	2
31	Normal transferrin patterns in congenital disorders of glycosylation with Golgi homeostasis disruption: apolipoprotein C-III at the rescue!. Clinica Chimica Acta, 2021, 519, 285-290.	1.1	2