
Keun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11224443/publications.pdf Version: 2024-02-01

KEIIN DADK

#	Article	IF	CITATIONS
1	Adaptive Conformal Cooling of Injection Molds Using Additively Manufactured TPMS Structures. Polymers, 2022, 14, 181.	4.5	34
2	Conformal Mold Heating and Cooling Using a Carbon Nanotube Film Heater and Additively Manufactured Cellular Metamaterial. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 1463-1476.	4.9	17
3	Infrared Heating for Rapid and Localized Shape Transformations of Additively Manufactured Polymer Parts. Frontiers in Materials, 2022, 9, .	2.4	Ο
4	A Study on the Heat Transfer Characteristics of a Glass Lens Mold Heating Block according to Design of a Heat Radiating Block. Journal of the Korean Society for Precision Engineering, 2022, 39, 493-500.	0.2	1
5	Multiscale Topology Optimization Combining Density-Based Optimization and Lattice Enhancement for Additive Manufacturing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1197-1208.	4.9	15
6	Design and additive manufacturing of thermal metamaterial with high thermal resistance and cooling capability. Additive Manufacturing, 2021, 41, 101947.	3.0	20
7	Mechanical reinforcement of additive-manufactured constructs using in situ auxiliary heating process. Additive Manufacturing, 2021, 43, 101995.	3.0	6
8	Lightweight Design of a Vacuum Gripper for Inspection Equipment Using Topology Optimization. Journal of the Korean Society for Precision Engineering, 2021, 38, 683-690.	0.2	1
9	Energy-efficient micromolding and in-mold compounding using ultrasonic vibration energy with enhanced material flow. Microsystem Technologies, 2020, 26, 1021-1030.	2.0	3
10	Topology Optimization and Additive Manufacturing of Automotive Component by Coupling Kinetic and Structural Analyses. International Journal of Automotive Technology, 2020, 21, 1455-1463.	1.4	19
11	Compressive behavior of soft lattice structures and their application to functional compliance control. Additive Manufacturing, 2020, 33, 101148.	3.0	22
12	Lightweight Design of a Sledge Frame for Para Ice Hockey Using Design for Additive Manufacturing. Journal of the Korean Society for Precision Engineering, 2020, 37, 407-414.	0.2	3
13	Development of Micropatterns on Curved Surfaces Using Two-Step Ultrasonic Forming. Micromachines, 2019, 10, 654.	2.9	1
14	High-frequency induction heating for increase of flow length in polymer/metal hybrid molding. Journal of Mechanical Science and Technology, 2019, 33, 5375-5382.	1.5	3
15	Topology Optimization and Additive Manufacturing of Customized Sports Item Considering Orthotropic Anisotropy. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1443-1450.	2.2	20
16	Automatic Design of 3D Conformal Lightweight Structures Based on a Tetrahedral Mesh. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 499-506.	4.9	25
17	Ultrasonic assisted thermoforming for rapid fabrication of a microspeaker diaphragm. Microsystem Technologies, 2017, 23, 1677-1686.	2.0	6
18	Effect of vibration transmission direction in ultrasonic thermoforming on the formability of micro-corrugations. International Journal of Precision Engineering and Manufacturing, 2017, 18, 697-703.	2.2	5

Keun Park

#	Article	IF	CITATIONS
19	Design for additive manufacturing of customized cast with porous shell structures. Journal of Mechanical Science and Technology, 2017, 31, 5477-5483.	1.5	26
20	Ultrasonic thermoforming of a large thermoplastic polyurethane film with the aid of infrared heating. Journal of Mechanical Science and Technology, 2017, 31, 5687-5693.	1.5	7
21	An Investigation of Thread Rolling Characteristics of Titanium Micro-Screws according to Die Design Parameters. Journal of the Korean Society for Precision Engineering, 2017, 34, 89-94.	0.2	1
22	Development of Hybrid Surfaces with Tunable Wettability by Selective Surface Modifications. Materials, 2016, 9, 136.	2.9	6
23	Variable wettability control of a polymer surface by selective ultrasonic imprinting and hydrophobic coating. Colloid and Polymer Science, 2016, 294, 1413-1423.	2.1	14
24	Design and analysis of ultrasonic horn for polymer sheet forming. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 49-54.	4.9	14
25	Investigation into Thread Rolling Characteristics of Subminiature Screws According to Thread Shapes. Transactions of the Korean Society of Mechanical Engineers, A, 2016, 40, 971-978.	0.2	2
26	An investigation into the anti-releasing performance of a serrated bolt. Journal of Mechanical Science and Technology, 2015, 29, 5127-5132.	1.5	4
27	Investigation of localized heating characteristics in selective ultrasonic imprinting. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1999-2004.	2.2	22
28	Coupled numerical analysis to investigate the heating mechanism of ultrasonic imprint lithography. Ultrasonics, 2015, 60, 96-102.	3.9	17
29	Fully coupled numerical analysis of high frequency induction heating and warm sheet metal forming. Steel Research International, 2015, 86, 877-885.	1.8	2
30	Finite Element Analysis for Improvement of Folding Defects in the Forging Process of Subminiature Screws. Journal of the Korean Society for Precision Engineering, 2015, 32, 509-515.	0.2	5
31	Thread Shape Design Using Joining and Release Analysis of Bolts. Journal of the Korean Society for Precision Engineering, 2015, 32, 523-528.	0.2	3
32	Design and Analysis of Shell Runners to Improve Cooling Efficiency in Injection Molding of Subminiature Lens. Transactions of the Korean Society of Mechanical Engineers, A, 2015, 39, 1021-1028.	0.2	1
33	Development of composite micro-patterns on polymer film using repetitive ultrasonic imprinting. International Journal of Precision Engineering and Manufacturing - Green Technology, 2014, 1, 341-345.	4.9	21
34	Selective ultrasonic imprinting for micropattern replication on predefined area. Ultrasonics, 2014, 54, 1495-1503.	3.9	17
35	Prediction of Joining Torque for Bit Depth of Subminiature Bolt. Transactions of the Korean Society of Mechanical Engineers, A, 2014, 38, 917-923.	0.2	4
36	Evaluation of Clamping Characteristics for Subminiature Screws According to Thread Angle Variation. Journal of the Korean Society for Precision Engineering, 2014, 31, 839-846.	0.2	9

Keun Park

#	Article	IF	CITATIONS
37	Numerical investigation on vibration characteristics of a micro-speaker diaphragm considering thermoforming effects. Journal of Mechanical Science and Technology, 2013, 27, 2923-2928.	1.5	6
38	Facile fabrication of superhydrophobic poly(methyl methacrylate) substrates using ultrasonic imprinting. Journal of Micromechanics and Microengineering, 2013, 23, 055019.	2.6	20
39	Investigation on Vibration Characteristics of Micro Speaker Diaphragms for Various Shape Designs. Journal of the Korean Society for Precision Engineering, 2013, 30, 790-796.	0.2	5
40	Direct patterning of micro-features on a polymer substrate using ultrasonic vibration. Microsystem Technologies, 2012, 18, 2053-2061.	2.0	39
41	Damage prediction in the multistep forging process of subminiature screws. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1619-1624.	2.2	20
42	Design optimization of ultrasonic horn for micro-pattern replication. International Journal of Precision Engineering and Manufacturing, 2012, 13, 2195-2201.	2.2	30
43	Integrated numerical analysis to evaluate replication characteristics of micro channels in a locally heated mold by selective induction. International Journal of Precision Engineering and Manufacturing, 2011, 12, 53-60.	2.2	13
44	Investigation into Heat Transfer Characteristics of an Injection Mold by Considering Thermal Contact Resistance. Transactions of Materials Processing, 2011, 20, 29-35.	0.1	4
45	Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance. Transactions of the Korean Society of Mechanical Engineers, A, 2011, 35, 1627-1633.	0.2	2
46	Eliminating weldlines of an injection-molded part with the aid of high-frequency induction heating. Journal of Mechanical Science and Technology, 2010, 24, 149-152.	1.5	31
47	Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features. Journal of Micromechanics and Microengineering, 2010, 20, 035002.	2.6	24
48	Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold. Transactions of Materials Processing, 2010, 19, 152-159.	0.1	4
49	Study on Improvement of Dimensional Accuracy of a Precision Plastic Screw Under Various Injection-Molding Conditions. Transactions of the Korean Society of Mechanical Engineers, A, 2010, 34, 1549-1554.	0.2	2
50	Fully-Coupled Numerical Analysis of High-Frequency Induction Heating for Thin-Wall Injection Molding. Polymer-Plastics Technology and Engineering, 2009, 48, 1070-1077.	1.9	19
51	Effect of Mold Temperature on Mechanical Properties of an Injection-Molded Part with Microfeatures. Journal of Polymer Engineering, 2009, 29, .	1.4	15
52	Numerical Evaluation of a Plastic Lens by Coupling Injection Molding Analysis with Optical Simulation. Japanese Journal of Applied Physics, 2008, 47, 8402-8407.	1.5	11
53	A Study on Flow Simulation and Deformation Analysis for Injection-Molded Plastic Parts Using Three-Dimensional Solid Elements. Polymer-Plastics Technology and Engineering, 2005, 43, 1569-1585.	1.9	22
54	Design of experiment considering two-way interactions and its application to injection molding processes with numerical analysis. Journal of Materials Processing Technology, 2004, 146, 221-227.	6.3	53

#	Article	IF	CITATIONS
55	Finite element analysis for the lamination process of a precision motor core using progressive stacking dies. Journal of Materials Processing Technology, 2002, 130-131, 477-481.	6.3	11