Guang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122421/publications.pdf Version: 2024-02-01

GUANC YANC

#	Article	IF	CITATIONS
1	Al-based medical e-diagnosis for fast and automatic ventricular volume measurement in patients with normal pressure hydrocephalus. Neural Computing and Applications, 2023, 35, 16011-16020.	5.6	6
2	Adaptive Hierarchical Dual Consistency for Semi-Supervised Left Atrium Segmentation on Cross-Domain Data. IEEE Transactions on Medical Imaging, 2022, 41, 420-433.	8.9	24
3	JAS-GAN: Generative Adversarial Network Based Joint Atrium and Scar Segmentations on Unbalanced Atrial Targets. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 103-114.	6.3	46
4	Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information Fusion, 2022, 77, 29-52.	19.1	280
5	Annealing Genetic GAN for Imbalanced Web Data Learning. IEEE Transactions on Multimedia, 2022, 24, 1164-1174.	7.2	12
6	Robust weakly supervised learning for COVID-19 recognition using multi-center CT images. Applied Soft Computing Journal, 2022, 116, 108291.	7.2	23
7	Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nature Biomedical Engineering, 2022, 6, 76-93.	22.5	110
8	Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information. Applied Intelligence, 2022, 52, 14693-14710.	5.3	6
9	3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Medical Imaging, 2022, 22, 6.	2.7	58
10	Quantification of changes in white matter tract fibers in idiopathic normal pressure hydrocephalus based on diffusion spectrum imaging. European Journal of Radiology, 2022, 149, 110194.	2.6	0
11	Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions. Information Fusion, 2022, 82, 99-122.	19.1	62
12	Generative Adversarial Network Powered Fast Magnetic Resonance Imaging—Comparative Study and New Perspectives. Intelligent Systems Reference Library, 2022, , 305-339.	1.2	5
13	Al-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis. Proceedings of the IEEE, 2022, 110, 224-245.	21.3	57
14	Aging and Alzheimer's Disease. , 2022, , 1057-1072.		0
15	CHAIMELEON Project: Creation of a Pan-European Repository of Health Imaging Data for the Development of Al-Powered Cancer Management Tools. Frontiers in Oncology, 2022, 12, 742701.	2.8	13
16	MCAL: An Anatomical Knowledge Learning Model for Myocardial Segmentation in 2-D Echocardiography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1277-1287.	3.0	7
17	Swin transformer for fast MRI. Neurocomputing, 2022, 493, 281-304.	5.9	55
18	Accelerating Cardiac Diffusion Tensor Imaging With a Uâ€Net Based Model: Toward Single Breathâ€Hold. Journal of Magnetic Resonance Imaging, 2022, 56, 1691-1704.	3.4	7

#	Article	IF	CITATIONS
19	A mathematical model for predicting intracranial pressure based on noninvasively acquired PC-MRI parameters in communicating hydrocephalus. Journal of Clinical Monitoring and Computing, 2021, 35, 1325-1332.	1.6	2
20	Industrial Cyber-Physical Systems-Based Cloud IoT Edge for Federated Heterogeneous Distillation. IEEE Transactions on Industrial Informatics, 2021, 17, 5511-5521.	11.3	35
21	3D PBV-Net: An automated prostate MRI data segmentation method. Computers in Biology and Medicine, 2021, 128, 104160.	7.0	65
22	Fully automatic framework for comprehensive coronary artery calcium scores analysis on non-contrast cardiac-gated CT scan: Total and vessel-specific quantifications. European Journal of Radiology, 2021, 134, 109420.	2.6	19
23	Multiparameter Synchronous Measurement With IVUS Images for Intelligently Diagnosing Coronary Cardiac Disease. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	10
24	PIC-GAN: A Parallel Imaging Coupled Generative Adversarial Network for Accelerated Multi-Channel MRI Reconstruction. Diagnostics, 2021, 11, 61.	2.6	34
25	Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left Ventricle Delineation from Myocardial Velocity Mapping. Lecture Notes in Computer Science, 2021, , 55-62.	1.3	1
26	Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: a synthetic hematocrit method using 3T cardiac magnetic resonance. Quantitative Imaging in Medicine and Surgery, 2021, 11, 510-520.	2.0	4
27	Wavelet improved GAN for MRI reconstruction. , 2021, , .		11
28	Multitask Learning for Estimating Multitype Cardiac Indices in MRI and CT Based on Adversarial Reverse Mapping. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 493-506.	11.3	29
29	Fast and Automated Segmentation for the Three-Directional Multi-Slice Cine Myocardial Velocity Mapping. Diagnostics, 2021, 11, 346.	2.6	27
30	Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise. Radiology: Artificial Intelligence, 2021, 3, e210011.	5.8	24
31	<scp>MEâ€Net</scp> : <scp>Multiâ€encoder</scp> net framework for brain tumor segmentation. International Journal of Imaging Systems and Technology, 2021, 31, 1834-1848.	4.1	76
32	Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200203.	3.4	17
33	A Deep Multi-Task Learning Framework for Brain Tumor Segmentation. Frontiers in Oncology, 2021, 11, 690244.	2.8	50
34	In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope. Biochemical and Biophysical Research Communications, 2021, 557, 8-13.	2.1	3
35	Explainable AI for COVID-19 CT Classifiers: An Initial Comparison Study. , 2021, , .		55
36	Recent advances in artificial intelligence for cardiac imaging. Computerized Medical Imaging and Graphics, 2021, 90, 101928.	5.8	5

#	Article	IF	CITATIONS
37	Can Clinical Symptoms and Laboratory Results Predict CT Abnormality? Initial Findings Using Novel Machine Learning Techniques in Children With COVID-19 Infections. Frontiers in Medicine, 2021, 8, 699984.	2.6	11
38	Arbitrary Scale Super-Resolution for Medical Images. International Journal of Neural Systems, 2021, 31, 2150037.	5.2	24
39	Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction. Computers in Biology and Medicine, 2021, 134, 104504.	7.0	42
40	Recent Advances in Fibrosis and Scar Segmentation From Cardiac MRI: A State-of-the-Art Review and Future Perspectives. Frontiers in Physiology, 2021, 12, 709230.	2.8	28
41	Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification. Diagnostics, 2021, 11, 1785.	2.6	13
42	FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution. Computerized Medical Imaging and Graphics, 2021, 92, 101969.	5.8	49
43	High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial Network With Attention and Cyclic Loss. IEEE Access, 2021, 9, 105951-105964.	4.2	18
44	Ageing and Alzheimer's Disease. , 2021, , 1-16.		2
45	Association Between Left Ventricular Global Function Index and Outcomes in Patients With Dilated Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 751907.	2.4	4
46	Deep Learning Enables Prostate MRI Segmentation: A Large Cohort Evaluation With Inter-Rater Variability Analysis. Frontiers in Oncology, 2021, 11, 801876.	2.8	6
47	A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images. Frontiers in Oncology, 2021, 11, 737368.	2.8	13
48	Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Medical Image Analysis, 2020, 60, 101595.	11.6	55
49	SaliencyGAN: Deep Learning Semisupervised Salient Object Detection in the Fog of IoT. IEEE Transactions on Industrial Informatics, 2020, 16, 2667-2676.	11.3	83
50	Benefits of Enhanced Recovery After Surgery in Patients Undergoing Endoscopic Sinus Surgery. American Journal of Rhinology and Allergy, 2020, 34, 280-289.	2.0	8
51	The NAD+-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mechanisms of Ageing and Development, 2020, 185, 111194.	4.6	36
52	A research agenda for ageing in China in the 21st century (2nd edition): Focusing on basic and translational research, long-term care, policy and social networks. Ageing Research Reviews, 2020, 64, 101174.	10.9	240
53	Exportin-5 SUMOylation promotes hepatocellular carcinoma progression. Experimental Cell Research, 2020, 395, 112219.	2.6	16
54	Application of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma. World Journal of Surgical Oncology, 2020, 18, 219.	1.9	19

#	Article	IF	CITATIONS
55	Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for Prostate Zonal Segmentation. IEEE Access, 2020, 8, 151817-151828.	4.2	60
56	Direct Quantification of Coronary Artery Stenosis Through Hierarchical Attentive Multi-View Learning. IEEE Transactions on Medical Imaging, 2020, 39, 4322-4334.	8.9	30
57	SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. Frontiers in Neuroinformatics, 2020, 14, 611666.	2.5	47
58	Automating in vivo cardiac diffusion tensor postprocessing with deep learning–based segmentation. Magnetic Resonance in Medicine, 2020, 84, 2801-2814.	3.0	15
59	Comparison Study of Radiomics and Deep Learning-Based Methods for Thyroid Nodules Classification Using Ultrasound Images. IEEE Access, 2020, 8, 52010-52017.	4.2	54
60	MV-RAN: Multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis. Computers in Biology and Medicine, 2020, 120, 103728.	7.0	39
61	Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention. Future Generation Computer Systems, 2020, 107, 215-228.	7.5	73
62	Weakly Supervised Deep Learning for COVID-19 Infection Detection and Classification From CT Images. IEEE Access, 2020, 8, 118869-118883.	4.2	279
63	A Novel Fuzzy Multilayer Perceptron (F-MLP) for the Detection of Irregularity in Skin Lesion Border Using Dermoscopic Images. Frontiers in Medicine, 2020, 7, 297.	2.6	18
64	Effects of less invasive surfactant administration (LISA) via a gastric tube on the treatment of respiratory distress syndrome in premature infants aged 32 to 36 weeks. Medicine (United States), 2020, 99, e19216.	1.0	18
65	Deep Attentive Wasserstein Generative Adversarial Networks for MRI Reconstruction with Recurrent Context-Awareness. Lecture Notes in Computer Science, 2020, , 167-177.	1.3	12
66	Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study. Frontiers in Aging Neuroscience, 2020, 12, 618538.	3.4	17
67	A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images. PeerJ Computer Science, 2020, 6, e268.	4.5	33
68	Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge. Medical Image Analysis, 2019, 58, 101537.	11.6	180
69	Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI. Radiology, 2019, 291, 606-617.	7.3	144
70	A Two-Stage U-Net Model for 3D Multi-class Segmentation on Full-Resolution Cardiac Data. Lecture Notes in Computer Science, 2019, , 191-199.	1.3	37
71	Automatic Prostate Zonal Segmentation Using Fully Convolutional Network With Feature Pyramid Attention. IEEE Access, 2019, 7, 163626-163632.	4.2	71
72	A Deep Learning Based Approach to Skin Lesion Border Extraction With a Novel Edge Detector in Dermoscopy Images. , 2019, , .		11

#	Article	IF	CITATIONS
73	Tissue-type mapping of gliomas. NeuroImage: Clinical, 2019, 21, 101648.	2.7	46
74	Direct Quantification for Coronary Artery Stenosis Using Multiview Learning. Lecture Notes in Computer Science, 2019, , 449-457.	1.3	9
75	Discriminative Consistent Domain Generation for Semi-supervised Learning. Lecture Notes in Computer Science, 2019, , 595-604.	1.3	9
76	Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons. Journal of Medical Imaging, 2019, 6, 1.	1.5	38
77	Lesion focused super-resolution. , 2019, , .		11
78	Recurrent Aggregation Learning for Multi-view Echocardiographic Sequences Segmentation. Lecture Notes in Computer Science, 2019, , 678-686.	1.3	10
79	MRI Brain Tumor Segmentation and Patient Survival Prediction Using Random Forests andÂFully Convolutional Networks. Lecture Notes in Computer Science, 2018, , 204-215.	1.3	33
80	Fully automatic segmentation and objective assessment of atrial scars for longâ€standing persistent atrial fibrillation patients using late gadoliniumâ€enhanced <scp>MRI</scp> . Medical Physics, 2018, 45, 1562-1576.	3.0	39
81	Computerâ€aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. Journal of Magnetic Resonance Imaging, 2018, 48, 1570-1577.	3.4	142
82	DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. IEEE Transactions on Medical Imaging, 2018, 37, 1310-1321.	8.9	724
83	Association of the ideal cardiovascular behaviors and factors with the incidence of nonalcoholic fatty liver disease. European Journal of Gastroenterology and Hepatology, 2018, 30, 578-582.	1.6	4
84	Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Computer Methods and Programs in Biomedicine, 2018, 157, 69-84.	4.7	163
85	Multiview Sequential Learning and Dilated Residual Learning for a Fully Automatic Delineation of the Left Atrium and Pulmonary Veins from Late Gadolinium-Enhanced Cardiac MRI Images. , 2018, 2018, 1123-1127.		12
86	Bayesian VoxDRN: A Probabilistic Deep Voxelwise Dilated Residual Network for Whole Heart Segmentation from 3D MR Images. Lecture Notes in Computer Science, 2018, , 569-577.	1.3	26
87	Generating Magnetic Resonance Spectroscopy Imaging Data of Brain Tumours from Linear, Non-linear andÂDeep Learning Models. Lecture Notes in Computer Science, 2018, , 130-138.	1.3	5
88	Adversarial and Perceptual Refinement for Compressed Sensing MRI Reconstruction. Lecture Notes in Computer Science, 2018, , 232-240.	1.3	50
89	Stochastic Deep Compressive Sensing for the Reconstruction of Diffusion Tensor Cardiac MRI. Lecture Notes in Computer Science, 2018, , 295-303.	1.3	22
90	Multiview Two-Task Recursive Attention Model for Left Atrium and Atrial Scars Segmentation. Lecture Notes in Computer Science, 2018, , 455-463.	1.3	23

#	Article	IF	CITATIONS
91	Association between the metabolically healthy obese phenotype and the risk of myocardial infarction: results from the Kailuan study. European Journal of Endocrinology, 2018, 179, 343-352.	3.7	24
92	A fully automatic deep learning method for atrial scarring segmentation from late gadolinium-enhanced MRI images. , 2017, , .		9
93	Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 183-203.	2.8	222
94	High-throughput imaging of zebrafish embryos using a linear-CCD-based flow imaging system. Biomedical Optics Express, 2017, 8, 5651.	2.9	12
95	Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. Communications in Computer and Information Science, 2017, , 506-517.	0.5	431
96	Multi-atlas propagation based left atrium segmentation coupled with super-voxel based pulmonary veins delineation in late gadolinium-enhanced cardiac MRI. Proceedings of SPIE, 2017, , .	0.8	4
97	Pairwise mixture model for unmixing partial volume effect in multi-voxel MR spectroscopy of brain tumour patients. Proceedings of SPIE, 2017, , .	0.8	2
98	Differentiation of pre-ablation and post-ablation late gadolinium-enhanced cardiac MRI scans of longstanding persistent atrial fibrillation patients. , 2017, , .		0
99	Super-Resolved Enhancement of a Single Image and Its Application in Cardiac MRI. Lecture Notes in Computer Science, 2016, , 179-190.	1.3	1
100	Combined self-learning based single-image super-resolution and dual-tree complex wavelet transform denoising for medical images. , 2016, , .		4
101	Supervised partial volume effect unmixing for brain tumor characterization using multi-voxel MR spectroscopic imaging. , 2016, , .		2
102	Morphometric model for discrimination between glioblastoma multiforme and solitary metastasis using threeâ€dimensional shape analysis. Magnetic Resonance in Medicine, 2016, 75, 2505-2516.	3.0	43
103	Brain tumor classification using the diffusion tensor image segmentation (D-SEC) technique. Neuro-Oncology, 2015, 17, 466-76.	1.2	46
104	Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering. Magnetic Resonance in Medicine, 2015, 74, 868-878.	3.0	26
105	Discrete Wavelet Transform-Based Whole-Spectral and Subspectral Analysis for Improved Brain Tumor Clustering Using Single Voxel MR Spectroscopy. IEEE Transactions on Biomedical Engineering, 2015, 62, 2860-2866.	4.2	27
106	Discrimination between glioblastoma multiforme and solitary metastasis using morphological features derived from the <i>p</i> : <i>q</i> tensor decomposition of diffusion tensor imaging. NMR in Biomedicine, 2014, 27, 1103-1111.	2.8	41
107	Classification of brain tumour ¹ H MR spectra: Extracting features by metabolite quantification or nonlinear manifold learning?. , 2014, ,		4
108	Joint Registration and Limited-Angle Reconstruction of Digital Breast Tomosynthesis. Lecture Notes in Computer Science, 2012, , 713-720.	1.3	5

#	Article	IF	CITATIONS
109	Combined Reconstruction and Registration of Digital Breast Tomosynthesis. Lecture Notes in Computer Science, 2010, , 760-768.	1.3	3