Meijia Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11223761/publications.pdf Version: 2024-02-01

Μειίια Ζηλνις

#	Article	IF	CITATIONS
1	A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 2014, 460, 110-125.	4.1	583
2	A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 2013, 314, 169-188.	4.0	545
3	Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism. Water Research, 2016, 102, 82-89.	5.3	209
4	A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor. Water Research, 2019, 149, 477-487.	5.3	203
5	Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Research, 2018, 129, 337-346.	5.3	168
6	Fouling mechanisms of gel layer in a submerged membrane bioreactor. Bioresource Technology, 2014, 166, 295-302.	4.8	133
7	Effect of calcium ions on fouling properties of alginate solution and its mechanisms. Journal of Membrane Science, 2017, 525, 320-329.	4.1	131
8	Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresource Technology, 2015, 175, 59-67.	4.8	130
9	A new insight into membrane fouling mechanism in submerged membrane bioreactor: Osmotic pressure during cake layer filtration. Water Research, 2013, 47, 2777-2786.	5.3	117
10	A novel in-situ micro-aeration functional membrane with excellent decoloration efficiency and antifouling performance. Journal of Membrane Science, 2022, 641, 119925.	4.1	101
11	Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications. Bioresource Technology, 2013, 146, 7-14.	4.8	83
12	Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle. Bioresource Technology, 2017, 226, 220-228.	4.8	77
13	Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration. Journal of Membrane Science, 2021, 635, 119532.	4.1	72
14	Electroless Ni–Sn–P plating to fabricate nickel alloy coated polypropylene membrane with enhanced performance. Journal of Membrane Science, 2021, 640, 119820.	4.1	72
15	Quantification of interfacial interactions between a rough sludge floc and membrane surface in a membrane bioreactor. Journal of Colloid and Interface Science, 2017, 490, 710-718.	5.0	69
16	Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: Effect of substrate pore size. Journal of Membrane Science, 2021, 638, 119699.	4.1	68
17	A new method for modeling rough membrane surface and calculation of interfacial interactions. Bioresource Technology, 2016, 200, 451-457.	4.8	66
18	A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance. Chemosphere, 2022, 288, 132490.	4.2	65

Meijia Zhang

#	Article	IF	CITATIONS
19	A facile method for simulating randomly rough membrane surface associated with interface behaviors. Applied Surface Science, 2018, 427, 915-921.	3.1	52
20	Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Research, 2019, 44, 101686.	2.4	49
21	Novel catalytic self-cleaning membrane with peroxymonosulfate activation for dual-function wastewater purification: Performance and mechanism. Journal of Cleaner Production, 2022, 355, 131858.	4.6	49
22	The biological performance of a novel microalgal-bacterial membrane photobioreactor: Effects of HRT and N/P ratio. Chemosphere, 2020, 261, 128199.	4.2	48
23	Fundamental thermodynamic mechanisms of membrane fouling caused by transparent exopolymer particles (TEP) in water treatment. Science of the Total Environment, 2022, 820, 153252.	3.9	45
24	Membrane fouling in a submerged membrane bioreactor: Effect of pH and its implications. Bioresource Technology, 2014, 152, 7-14.	4.8	44
25	Osmotic pressure effect on membrane fouling in a submerged anaerobic membrane bioreactor and its experimental verification. Bioresource Technology, 2012, 125, 97-101.	4.8	43
26	<i>In situ</i> conversion of ZnO into zeolitic imidazolate framework-8 in polyamide layers for well-structured high-permeance thin-film nanocomposite nanofiltration membranes. Journal of Materials Chemistry A, 2021, 9, 7684-7691.	5.2	43
27	A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Separation and Purification Technology, 2022, 280, 119866.	3.9	43
28	Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor. Bioresource Technology, 2016, 216, 817-823.	4.8	37
29	Effects of ionic strength on membrane fouling in a membrane bioreactor. Bioresource Technology, 2014, 156, 35-41.	4.8	35
30	A novel approach for quantitative evaluation of the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor. Bioresource Technology, 2014, 171, 247-252.	4.8	31
31	A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism. Scientific Reports, 2016, 6, 33343.	1.6	31
32	Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control. Bioresource Technology, 2016, 201, 245-252.	4.8	30
33	Influences of fractal dimension of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor. Journal of Colloid and Interface Science, 2017, 500, 79-87.	5.0	28
34	Membrane fouling in a submerged membrane bioreactor with focus on surface properties and interactions of cake sludge and bulk sludge. Bioresource Technology, 2014, 169, 213-219.	4.8	27
35	Modeling three-dimensional surface morphology of biocake layer in a membrane bioreactor based on fractal geometry. Bioresource Technology, 2016, 222, 478-484.	4.8	24
36	Influences of acid–base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment. Bioresource Technology, 2016, 214, 355-362.	4.8	23

Meijia Zhang

#	Article	IF	CITATIONS
37	Quantitative assessment of interfacial forces between two rough surfaces and its implications for anti-adhesion membrane fabrication. Separation and Purification Technology, 2017, 189, 238-245.	3.9	23
38	Experimental evidence for osmotic pressure-induced fouling in a membrane bioreactor. Bioresource Technology, 2014, 158, 119-126.	4.8	22
39	A new approach to construct three-dimensional surface morphology of sludge flocs in a membrane bioreactor. Bioresource Technology, 2016, 219, 521-526.	4.8	20
40	Quantitative evaluation of the interfacial interactions between a randomly rough sludge floc and membrane surface in a membrane bioreactor based on fractal geometry. Bioresource Technology, 2017, 234, 198-207.	4.8	19
41	Characterization of foaming and non-foaming sludge relating to aeration and the implications for membrane fouling control in submerged membrane bioreactors. Journal of Water Process Engineering, 2019, 28, 250-259.	2.6	18
42	Membrane fouling in a microalgal-bacterial membrane photobioreactor: Effects of P-availability controlled by N:P ratio. Chemosphere, 2021, 282, 131015.	4.2	15
43	Evaluation of membrane fouling in a microalgal-bacterial membrane photobioreactor: Effects of SRT. Science of the Total Environment, 2022, 839, 156414.	3.9	15
44	In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance. Chemical Engineering Journal, 2022, 435, 134804.	6.6	13
45	Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces. Bioresource Technology, 2017, 243, 1121-1132.	4.8	11
46	Effects of solids retention time on the biological performance of a novel microalgal-bacterial membrane photobioreactor for industrial wastewater treatment. Journal of Environmental Chemical Engineering, 2021, 9, 105500.	3.3	11
47	Membrane Photobioreactor Applied for Municipal Wastewater Treatment at a High Solids Retention Time: Effects of Microalgae Decay on Treatment Performance and Biomass Properties. Membranes, 2022, 12, 564.	1.4	8
48	Author's responses to the comment by Seong-Hoon Yoon on "A new insight into membrane fouling mechanism in submerged membrane bioreactor: Osmotic pressure during cake layer filtration― published in Water Research, vol. 47, pp.Â2777–2786, 2013. Water Research, 2013, 47, 4790-4791.	5.3	3