Peter Glavic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122361/publications.pdf

Version: 2024-02-01

84 3,056 23
papers citations h-index

23 54
h-index g-index

88 88
all docs docs citations

88 times ranked 2761 citing authors

#	Article	IF	CITATIONS
1	Quantities and Units in Chemical and Environmental Engineering. Standards, 2022, 2, 43-51.	1.4	1
2	Updated Principles of Sustainable Engineering. Processes, 2022, 10, 870.	2.8	9
3	Process Design and Sustainable Development—A European Perspective. Processes, 2021, 9, 148.	2.8	22
4	Integrating Sustainability into Logistics Oriented Education in Europe. Sustainability, 2021, 13, 1667.	3.2	8
5	Review of the International Systems of Quantities and Units Usage. Standards, 2021, 1, 2-16.	1.4	6
6	Evolution and Current Challenges of Sustainable Consumption and Production. Sustainability, 2021, 13, 9379.	3.2	34
7	Identifying Key Issues of Education for Sustainable Development. Sustainability, 2020, 12, 6500.	3.2	41
8	Higher education in Central European countries – Critical factors for sustainability transition. Journal of Cleaner Production, 2017, 151, 670-684.	9.3	48
9	Total Site Resource Efficiency System. Computer Aided Chemical Engineering, 2016, 38, 2235-2240.	0.5	1
10	Innovative 3D Training Platform for Recycling of Waste coming from Electric and Electronic Devices. Computer Aided Chemical Engineering, 2016, , 2259-2264.	0.5	1
11	Sustainable consumption and production $\hat{a}\in$ Research, experience, and development $\hat{a}\in$ The Europe we want. Journal of Cleaner Production, 2016, 138, 139-147.	9.3	80
12	Comprehensive approach to increase energy efficiency based on versatile industrial practices. Journal of Cleaner Production, 2016, 112, 2813-2821.	9.3	27
13	Conference announcement and Call for Papers. Journal of Cleaner Production, 2014, 70, 1-3.	9.3	4
14	Thirty Years of International Symposia on Process Systems Engineering. Current Opinion in Chemical Engineering, 2012, 1, 421-429.	7.8	4
15	University ranking using research, educational and environmental indicators. Journal of Cleaner Production, 2010, 18, 619-628.	9.3	189
16	Natural laws dominate the human society. Clean Technologies and Environmental Policy, 2010, 12, 591-599.	4.1	4
17	Energy saving opportunities in heat integrated beverage plant retrofit. Applied Thermal Engineering, 2010, 30, 36-44.	6.0	35
18	Fostering collaboration between universities regarding regional sustainability initiatives – the University of Maribor. Journal of Cleaner Production, 2009, 17, 1143-1153.	9.3	49

#	Article	IF	CITATIONS
19	Assessment of different strategies for the co-production of bioethanol and beet sugar. Chemical Engineering Research and Design, 2009, 87, 1217-1231.	5 . 6	28
20	Multi-criteria optimization in a methanol process. Applied Thermal Engineering, 2009, 29, 1043-1049.	6.0	14
21	Engineering education: environmental and chemical engineering or technology curricula – a European perspective. European Journal of Engineering Education, 2009, 34, 47-61.	2.3	20
22	The Possibilities of the Application of Feed Additives from Macroalgae in Sustainable Mineral Animal Feeding. American Journal of Applied Sciences, 2009, 6, 1458-1466.	0.2	5
23	Feedwater requirements in the food industry. , 2008, , 629-646.		1
24	Approaches to Sustainable Energy Consumption Patterns. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 213-226.	0.2	8
25	NLP optimization of gas turbine including experimental catalyst conversion data in methanol plant. Computer Aided Chemical Engineering, 2007, 24, 1139-1144.	0.5	1
26	NLP optimization of a methanol plant by using H2 co-product in fuel cells. Computer Aided Chemical Engineering, 2007, , 1301-1306.	0.5	0
27	Fuzzy logic model for the performance benchmarking of sugar plants by considering best available techniques. Computer Aided Chemical Engineering, 2007, , 111-116.	0.5	1
28	H ₂ Separation and Use in Fuel Cells and CO ₂ Separation and Reuse as a Reactant in the Existing Methanol Process. Energy & Energy & 2007, 21, 2892-2899.	5.1	6
29	CO ₂ Separation from Purge Gas and Flue Gas in the Methanol Process, Using NLP Model Optimization. Industrial & Description of the Methanol Process, Using NLP Model Optimization. Industrial & Description of the Methanol Process, Using NLP Model Optimization. Industrial & Description of the Methanol Process, Using NLP Model Optimization. Industrial & Description of the Methanol Process, Using NLP Model Optimization. Industrial & Description of the Methanol Process, Using NLP Model Optimization. Industrial & Description of the Methanol Process, Using NLP Model Optimization. Industrial & Description of the Methanol Process of the Methanol	3.7	10
30	Methodology for determination of anaerobic digestion kinetics using a bench top digester. Resources, Conservation and Recycling, 2007, 51, 225-236.	10.8	3
31	Fuzzy Logic Model for the performance benchmarking of sugar plants by considering best available techniques. Resources, Conservation and Recycling, 2007, 52, 314-330.	10.8	15
32	Improving the economic and environmental performances of the beet sugar industry in Slovenia: increasing fuel efficiency and using by-products for ethanol. Journal of Cleaner Production, 2007, 15, 1240-1252.	9.3	36
33	What are the key elements of a sustainable university?. Clean Technologies and Environmental Policy, 2007, 9, 103-114.	4.1	172
34	Review of sustainability terms and their definitions. Journal of Cleaner Production, 2007, 15, 1875-1885.	9.3	762
35	Optimization of a gas turbine in the methanol process, using the NLP model. Applied Thermal Engineering, 2007, 27, 1799-1805.	6.0	11
36	Chapter 1 Heat integration between processes: Integrated structure using stage-wise model. Computer Aided Chemical Engineering, 2006, 21, 1069-1074.	0.5	0

#	Article	IF	Citations
37	Heat integration in a speciality product process. Applied Thermal Engineering, 2006, 26, 881-891.	6.0	8
38	Design of the optimal total site heat recovery system using SSSP approach. Chemical Engineering and Processing: Process Intensification, 2006, 45, 372-382.	3.6	23
39	Sustainability engineering education. Clean Technologies and Environmental Policy, 2006, 8, 24-30.	4.1	29
40	Hydrogen in the Methanol Production Process. Bulletin of Science, Technology and Society, 2006, 26, 323-327.	2.9	0
41	A model for integrated assessment of sustainable development. Resources, Conservation and Recycling, 2005, 43, 189-208.	10.8	300
42	Water minimization in process industries: case study in beet sugar plant. Resources, Conservation and Recycling, 2005, 43, 133-145.	10.8	28
43	Heat integration between processes: Integrated structure and MINLP model. Computers and Chemical Engineering, 2005, 29, 1699-1711.	3.8	34
44	How to compare companies on relevant dimensions of sustainability. Ecological Economics, 2005, 55, 551-563.	5.7	251
45	Optimization by stage-wise model for complex industrial heat exchanger network. Computer Aided Chemical Engineering, 2005, 20, 343-348.	0.5	2
46	A model for integrated assessment of sustainable development. Resources, Conservation and Recycling, 2005, 43, 189-208.	10.8	146
47	Integrated process synthesis of large-scale chemical processes. Computer Aided Chemical Engineering, 2004, 18, 229-234.	0.5	0
48	3.3.3 Designing sustainable processes using environmental and economic assessment. Incose International Symposium, 2004, 14, 558-572.	0.6	0
49	Indicators of Sustainable Production. , 2004, , 395-414.		4
50	Indicators of sustainable production. Clean Technologies and Environmental Policy, 2003, 5, 279-288.	4.1	174
51	Process integration of a steam turbine. Applied Thermal Engineering, 2003, 23, 1227-1234.	6.0	18
52	Waste heat integration between processes III: Mixed integer nonlinear programming model. Computer Aided Chemical Engineering, 2003, , 179-184.	0.5	0
53	Classifying and proposing phase equilibrium methods with trained Kohonen neural network. Computer Aided Chemical Engineering, 2003, 14, 827-832.	0.5	0
54	Waste heat integration between processes. Applied Thermal Engineering, 2002, 22, 1259-1269.	6.0	15

#	Article	IF	Citations
55	A simple method for systematic synthesis of thermally integrated distillation sequences. Chemical Engineering Journal, 2002, 89, 155-172.	12.7	12
56	Optimal reactor systems for Van de Vusse reaction scheme with multicomponent feed. Computers and Chemical Engineering, 2002, 26, 1335-1343.	3.8	1
57	Integration of Flue Gas into the Process Flowsheet by Combined Pinch–MINLP Approach. Chemical Engineering Research and Design, 2002, 80, 606-614.	5.6	8
58	Complex integration of processes. Canadian Journal of Chemical Engineering, 2001, 79, 643-654.	1.7	8
59	A simple synthesis method for studying thermally integrated distillation sequences. Canadian Journal of Chemical Engineering, 2000, 78, 908-916.	1.7	3
60	Retrofit of complex and energy intensive processes II: stepwise simultaneous superstructural approach. Computers and Chemical Engineering, 2000, 24, 125-138.	3.8	28
61	Simultaneous retrofit of complex and energy intensive processes-III. Computers and Chemical Engineering, 2000, 24, 1229-1235.	3.8	14
62	Total site: wastewater minimization. Resources, Conservation and Recycling, 2000, 30, 261-275.	10.8	24
63	Improving the sustainability of regional cleaner production programs. Resources, Conservation and Recycling, 2000, 29, 19-31.	10.8	14
64	Optimization of ethanol fermentation process design. Applied Thermal Engineering, 2000, 20, 529-543.	6.0	23
65	Design of Batch Versus Continuous Processes. Chemical Engineering Research and Design, 2000, 78, 231-244.	5.6	11
66	A new method for studying thermally integrated distillation sequences. Computers and Chemical Engineering, 1999, 23, S899-S902.	3.8	4
67	Cost targeting for HEN through simultaneous optimization approach: a unified pinch technology and mathematical programming design of large HEN. Computers and Chemical Engineering, 1997, 21, 833-853.	3.8	26
68	Towards automatic generation of novel reactor-separator networks with multiple multicomponent feeds. Computers and Chemical Engineering, 1997, 21, S41-S46.	3.8	6
69	Prices of utilities and process structure. Computers and Chemical Engineering, 1996, 20, S183-S188.	3.8	2
70	Pressure exchangers in pinch technology. Computers and Chemical Engineering, 1996, 20, 711-715.	3.8	10
71	Innovative designs of reactor networks from reaction and mixing principles. Computers and Chemical Engineering, 1996, 20, S455-S460.	3.8	5
72	An integral approach to waste minimization in process industries. Resources, Conservation and Recycling, 1996, 17, 169-188.	10.8	58

#	Article	IF	CITATIONS
73	Theoretical bases of separation sequence heuristics. Computers and Chemical Engineering, 1994, 18, S143-S147.	3.8	4
74	Design for future expansions. Computers and Chemical Engineering, 1994, 18, S149-S153.	3.8	0
75	Optimal process design for specialty products. Computers and Chemical Engineering, 1992, 16, S321-S328.	3.8	2
76	Separation of an azeotropic mixture by reverse extractive distillation. AICHE Journal, 1989, 35, 1207-1210.	3.6	19
77	Heat integration of reactors—II. Total flowsheet integration. Chemical Engineering Science, 1989, 44, 2667-2682.	3.8	15
78	Heat integration of reactors—I. Criteria for the placement of reactors into process flowsheet. Chemical Engineering Science, 1988, 43, 593-608.	3.8	44
79	Modeling of reactors for process heat integration. Computers and Chemical Engineering, 1988, 12, 189-194.	3.8	8
80	Nomenclature and symbolism for the "quantities" of a substance. Journal of Chemical Education, 1988, 65, 130.	2.3	0
81	Reaction of scandium trifluoride with hydrazine. Polyhedron, 1982, 1, 735-736.	2.2	1
82	On the synthesis and properties of hydrazinium $(1+)$ fluoride. Journal of Fluorine Chemistry, 1981, 17, 187-190.	1.7	3
83	Tensimetric study of the system uranium tetrafluoride-anhydrous hydrazine. Journal of Inorganic and Nuclear Chemistry, 1972, 34, 2959.	0.5	4
84	Education for Zero Waste and the Circular Economy Sector in Europe. , 0, , .		1