Marianne Patt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11223326/publications.pdf

Version: 2024-02-01

70 papers 2,282 citations

218677 26 h-index 243625 44 g-index

77 all docs

77 docs citations

77 times ranked

2999 citing authors

#	Article	IF	CITATIONS
1	EANM position on the in-house preparation of radiopharmaceuticals. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1095-1098.	6.4	12
2	Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nature Communications, 2022, 13, 1362.	12.8	34
3	Multicenter 18F-PI-2620 PET for In Vivo Braak Staging of Tau Pathology in Alzheimer's Disease. Biomolecules, 2022, 12, 458.	4.0	9
4	PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. Journal of Nuclear Medicine, 2022, 63, 33S-44S.	5.0	21
5	Molecular Simulations Reveal Distinct Energetic and Kinetic Binding Properties of [¹⁸ F]PI-2620 on Tau Filaments from 3R/4R and 4R Tauopathies. ACS Chemical Neuroscience, 2022, 13, 2222-2234.	3.5	10
6	(+)-[18F]Flubatine as a novel α4β2 nicotinic acetylcholine receptor PET ligandâ€"results of the first-in-human brain imaging application in patients with β-amyloid PET-confirmed Alzheimer's disease and healthy controls. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 731-746.	6.4	10
7	Emerging Radionuclides in a Regulatory Framework for Medicinal Products – How Do They Fit?. Frontiers in Medicine, 2021, 8, 678452.	2.6	12
8	Cortical [<scp>¹⁸F</scp>] <scp>PI</scp> â€2620 Binding Differentiates Corticobasal Syndrome Subtypes. Movement Disorders, 2021, 36, 2104-2115.	3.9	46
9	Binding characteristics of [¹⁸ F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2957-2972.	4.3	30
10	Feasibility of short imaging protocols for [18F]PI-2620 tau-PET in progressive supranuclear palsy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3872-3885.	6.4	22
11	Superiority of Formalin-Fixed Paraffin-Embedded Brain Tissue for in vitro Assessment of Progressive Supranuclear Palsy Tau Pathology With [18F]Pl-2620. Frontiers in Neurology, 2021, 12, 684523.	2.4	11
12	Feasibility of short imaging protocols for [¹⁸ F]Plâ€2620 tauâ€PET in progressive supranuclear palsy. Alzheimer's and Dementia, 2021, 17, .	0.8	0
13	Assessment of ¹⁸ F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurology, 2020, 77, 1408.	9.0	145
14	Higher HbA1c levels associate with lower hippocampal serotonin transporter availability in non-diabetic adults with obesity. Scientific Reports, 2020, 10, 21383.	3.3	0
15	18 Fâ€Plâ€2620 tauâ€PET in corticobasal syndrome (ActiGliA cohort). Alzheimer's and Dementia, 2020, 16, e041469.	0.8	1
16	Quantitative susceptibility mapping in \hat{l}^2 -Amyloid PET-stratified patients with dementia and healthy controls $\hat{a} \in A$ hybrid PET/MRI study. European Journal of Radiology, 2020, 131, 109243.	2.6	10
17	Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2911-2922.	6.4	36
18	Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 17.	3.9	28

#	Article	IF	CITATIONS
19	In vitro and in vivo Human Metabolism of (S)-[18F]Fluspidine $\hat{a} \in A$ Radioligand for Imaging \hat{f}_1 Receptors With Positron Emission Tomography (PET). Frontiers in Pharmacology, 2019, 10, 534.	3.5	9
20	Radionuclides: medicinal products or rather starting materials?. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 22.	3.9	11
21	Early after Administration [11C]PiB PET Images Correlate with Cognitive Dysfunction Measured by the CERAD Test Battery. Journal of Alzheimer's Disease, 2019, 68, 65-76.	2.6	4
22	Central noradrenaline transporter availability is linked with HPA axis responsiveness and copeptin in human obesity and non-obese controls. Stress, 2019, 22, 93-102.	1.8	9
23	ICâ€Pâ€161: 18Fâ€Pl2620 TAUâ€PET IN PROGRESSIVE SUPRANUCLEAR PALSY: A MULTIâ€CENTER EVALUATION. and Dementia, 2019, 15, P128.	Alzheimer	ું પુર
24	Noradrenaline transporter availability on [11C]MRB PET predicts weight loss success in highly obese adults. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1618-1625.	6.4	7
25	Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer's dementia. Brain, 2018, 141, 1840-1854.	7.6	60
26	Dual Time-Point [18F]Florbetaben PET Delivers Dual Biomarker Information in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 66, 1105-1116.	2.6	20
27	Exploring the Metabolism of (+)-[18F]Flubatine In Vitro and In Vivo: LC-MS/MS Aided Identification of Radiometabolites in a Clinical PET Study â€. Molecules, 2018, 23, 464.	3.8	9
28	Quantitative Susceptibility Mapping of Amyloid-β Aggregates in Alzheimer's Disease with 7T MR. Journal of Alzheimer's Disease, 2018, 64, 393-404.	2.6	39
29	Evaluation of early-phase [18 F]-florbetaben PET acquisition in clinical routine cases. Neurolmage: Clinical, 2017, 14, 77-86.	2.7	91
30	Dissociation Between Brown Adipose Tissue ¹⁸ F-FDG Uptake and Thermogenesis in Uncoupling Protein 1–Deficient Mice. Journal of Nuclear Medicine, 2017, 58, 1100-1103.	5.0	73
31	Central noradrenaline transporter availability in highly obese, non-depressed individuals. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1056-1064.	6.4	50
32	Test–retest measurements of dopamine D1-type receptors using simultaneous PET/MRI imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1025-1032.	6.4	50
33	Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats. Cell Metabolism, 2017, 25, 335-344.	16.2	108
34	Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2239-2248.	6.4	15
35	The association between in vivo central noradrenaline transporter availability and trait impulsivity. Psychiatry Research - Neuroimaging, 2017, 267, 9-14.	1.8	11
36	European regulations for the introduction of novel radiopharmaceuticals in the clinical setting. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 135-144.	0.7	33

#	Article	IF	CITATIONS
37	Central serotonin transporter availability in highly obese individuals compared with non-obese controls: A [11C] DASB positron emission tomography study. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1096-1104.	6.4	22
38	Early [18F]florbetaben and [11C]PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1700-1709.	6.4	69
39	Effortful control as a dimension of temperament is negatively associated with prefrontal serotonin transporter availability in obese and nonâ€obese individuals. European Journal of Neuroscience, 2016, 44, 2460-2466.	2.6	6
40	Feasibility and acceptance of simultaneous amyloid PET/MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2236-2243.	6.4	25
41	Radiation dosimetry of the $\hat{l}\pm4\hat{l}^22$ nicotinic receptor ligand (+)-[18F]flubatine, comparing preclinical PET/MRI and PET/CT to first-in-human PET/CT results. EJNMMI Physics, 2016, 3, 25.	2.7	17
42	Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model. EJNMMI Physics, 2016, 3, 2.	2.7	20
43	In-vivo serotonin transporter availability and somatization in healthy subjects. Personality and Individual Differences, 2016, 94, 354-359.	2.9	3
44	Partial-Volume Effect Correction Improves Quantitative Analysis of ¹⁸ F-Florbetaben β-Amyloid PET Scans. Journal of Nuclear Medicine, 2016, 57, 198-203.	5.0	58
45	Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain ν-opioid Receptor Availability in Diet-Induced Obese Male Rats. Frontiers in Neuroscience, 2016, 10, 620.	2.8	15
46	A Promising PET Tracer for Imaging of $\hat{l}\pm7$ Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand. Molecules, 2015, 20, 18387-18421.	3.8	13
47	Alzheimer's Disease FDG PET Imaging Pattern in an Amyloid-Negative Mild Cognitive Impairment Subject. Journal of Alzheimer's Disease, 2015, 47, 539-543.	2.6	7
48	Simultaneous PET/Mri in Stroke: A Case Series. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1421-1425.	4.3	57
49	First-in-human PET quantification study of cerebral $\hat{1}\pm4\hat{1}^22^*$ nicotinic acetylcholine receptors using the novel specific radioligand (\hat{a} '')-[18F]Flubatine. Neurolmage, 2015, 118, 199-208.	4.2	49
50	Ethnic comparison of pharmacokinetics of 18F-florbetaben, a PET tracer for beta-amyloid imaging, in healthy Caucasian and Japanese subjects. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 89-96.	6.4	8
51	Internal Dose Assessment of (–)- ¹⁸ F-Flubatine, Comparing Animal Model Datasets of Mice and Piglets with First-in-Human Results. Journal of Nuclear Medicine, 2014, 55, 1885-1892.	5.0	17
52	Distinctive In Vivo Kinetics of the New σ < sub>1 < /sub> Receptor Ligands (<i>R < /i>)-(+)- and (<i>S < /i>)-(–)- < sup>18 < /sup>F-Fluspidine in Porcine Brain. Journal of Nuclear Medicine, 2014, 55, 1730-1736.</i></i>	5.0	26
53	Altered serotonin transporter availability in patients with multiple sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 827-835.	6.4	56
54	Synthesis and biological evaluation of both enantiomers of [18F]flubatine, promising radiotracers with fast kinetics for the imaging of $\hat{l}\pm4\hat{l}^2$ 2-nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2014, 22, 804-812.	3.0	29

#	Article	IF	Citations
55	Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (â^')-[18F]Flubatine in humans. Nuclear Medicine and Biology, 2014, 41, 489-494.	0.6	18
56	Fully automated radiosynthesis of both enantiomers of [18F]Flubatine under GMP conditions for human application. Applied Radiation and Isotopes, 2013, 80, 7-11.	1.5	20
57	PET Quantification of $\langle \sup 18 \langle \sup F$ -Florbetaben Binding to \hat{l}^2 -Amyloid Deposits in Human Brains. Journal of Nuclear Medicine, 2013, 54, 723-731.	5.0	101
58	Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1001-1011.	6.4	30
59	Preserved serotonin transporter binding in de novo Parkinson's disease: negative correlation with the dopamine transporter. Journal of Neurology, 2011, 258, 19-26.	3.6	65
60	Decreased cerebral α4Î ² 2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 515-525.	6.4	109
61	Individualized quantification of brain β-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1702-1714.	6.4	91
62	The serotonin transporter availability in untreated early-onset and late-onset patients with obsessive–compulsive disorder. International Journal of Neuropsychopharmacology, 2011, 14, 606-617.	2.1	53
63	Reduced α4β2*–Nicotinic Acetylcholine Receptor Binding and Its Relationship to Mild Cognitive and Depressive Symptoms in Parkinson Disease. Archives of General Psychiatry, 2009, 66, 866.	12.3	140
64	In vivo measurement of nicotinic acetylcholine receptors with [¹⁸ F]norchloroâ€fluoroâ€homoepibatidine. Synapse, 2008, 62, 205-218.	1.2	47
65	Measurement of the $\hat{l}\pm4\hat{l}^22^*$ nicotinic acetylcholine receptor ligand 2-[18F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nuclear Medicine and Biology, 2007, 34, 331-342.	0.6	22
66	Synthesis procedure for routine production of 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]F-A-85380). Applied Radiation and Isotopes, 2007, 65, 1244-1248.	1.5	16
67	Synthetic approaches and bio-distribution studies of $[11C]$ methyl-phenidate. Journal of Pharmacy and Pharmaceutical Sciences, 2007, 10, 312s-320s.	2.1	1
68	Binding properties of the cerebral $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins. Nuclear Medicine and Biology, 2006, 33, 899-906.	0.6	12
69	Autoradiography of 2-[18F]F-A-85380 on nicotinic acetylcholine receptors in the porcine brain in vitro. Synapse, 2006, 59, 201-210.	1.2	11
70	Nicotinic acetylcholine receptors in patients with Parkinson's disease and Alzheimer's disease: Specific binding of 2-[18F]F-A-85380 in the cerebral white matter as demonstrated by PET and comparison with diffusion tensor MRI (DTI). Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S584-S584.	4.3	0