
Trish Berger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11222347/publications.pdf Version: 2024-02-01

TDISH REDCED

#	Article	IF	CITATIONS
1	Cold shock damage is due to lipid phase transitions in cell membranes: A demonstration using sperm as a model. The Journal of Experimental Zoology, 1993, 265, 432-437.	1.4	445
2	Comparison of techniques for selection of motile spermatozoa. Fertility and Sterility, 1985, 43, 268-273.	1.0	221
3	Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Developmental Biology, 2006, 290, 220-235.	2.0	101
4	Zona Pellucida-Induced Acrosome Reaction in Boar Sperm1. Biology of Reproduction, 1989, 40, 525-530.	2.7	85
5	Comparison of the ability of progesterone and heat solubilized porcine zona pellucida to initiate the porcine sperm acrosome reaction in vitro. Molecular Reproduction and Development, 1994, 39, 433-438.	2.0	85
6	Evaluation of assay conditions for the zona-free hamster ova bioassay of boar sperm fertility. Gamete Research, 1988, 19, 101-111.	1.7	66
7	Clinical applications of techniques used in human in vitro fertilization research. American Journal of Obstetrics and Gynecology, 1983, 146, 477-481.	1.3	62
8	Arylsulfatase A Is Present on the Pig Sperm Surface and Is Involved in Sperm–Zona Pellucida Binding. Developmental Biology, 2002, 247, 182-196.	2.0	60
9	Modification of the zona-free hamster ova bioassay of boar sperm fertility and correlation with in vivo fertility. Gamete Research, 1989, 22, 385-397.	1.7	52
10	The dynamic steroid landscape of equine pregnancy mapped by mass spectrometry. Reproduction, 2016, 151, 421-430.	2.6	49
11	Reducing Estrogen Synthesis in Developing Boars Increases Testis Size and Total Sperm Production. Journal of Andrology, 2006, 27, 552-559.	2.0	41
12	Porcine sperm fertilizing potential in relationship to sperm functional capacities. Animal Reproduction Science, 1996, 44, 231-239.	1.5	40
13	Localization of the Rho GTPases and some Rho effector proteins in the sperm of several mammalian species. Zygote, 2006, 14, 249-257.	1.1	39
14	Factors affecting human sperm penetration of zona-free hamster ova. American Journal of Obstetrics and Gynecology, 1983, 145, 397-401.	1.3	37
15	Ontogeny of androgen and estrogen receptor expression in porcine testis: Effect of reducing testicular estrogen synthesis. Animal Reproduction Science, 2007, 102, 286-299.	1.5	34
16	Proteomic Characterization of Pig Sperm Anterior Head Plasma Membrane Reveals Roles of Acrosomal Proteins in ZP3 Binding. Journal of Cellular Physiology, 2015, 230, 449-463.	4.1	32
17	Reducing endogenous estrogens during the neonatal and juvenile periods affects reproductive tract development and sperm production in postpuberal boars. Animal Reproduction Science, 2008, 109, 218-235.	1.5	30
18	Increased testicular Sertoli cell population induced by an estrogen receptor antagonist. Molecular and Cellular Endocrinology, 2013, 366, 53-58.	3.2	30

Trish Berger

#	Article	IF	CITATIONS
19	Pisum sativum agglutinin used as an acrosomal stain of porcine and caprine sperm. Theriogenology, 1990, 33, 689-695.	2.1	26
20	Stimulation of Sertoli cell proliferation: defining the response interval to an inhibitor of estrogen synthesis in the boar. Reproduction, 2012, 143, 523-529.	2.6	24
21	Correlation of semen transferrin concentration and sperm fertilizing capacity. American Journal of Obstetrics and Gynecology, 1984, 150, 528-531.	1.3	22
22	Remodeling of the plasma membrane in preparation for sperm-egg recognition: roles of acrosomal proteins. Asian Journal of Andrology, 2015, 17, 574.	1.6	22
23	Reduced endogenous estrogen delays epididymal development but has no effect on efferent duct morphology in boars. Reproduction, 2007, 134, 593-604.	2.6	20
24	Role for endogenous estrogen in prepubertal Sertoli cell maturation. Animal Reproduction Science, 2012, 135, 106-112.	1.5	18
25	Seminal prolactin concentration and sperm reproductive capacity**Presented in part at the Thirty-First Annual Meeting of the Pacific Coast Fertility Society, October 12 to 16, 1983, Rancho Mirage, California Fertility and Sterility, 1985, 43, 632-635.	1.0	15
26	Reduced Endogenous Estrogen and Hemicastration Interact Synergistically to Increase Porcine Sertoli Cell Proliferation1. Biology of Reproduction, 2014, 90, 114.	2.7	15
27	Changes in exposed membrane proteins during in vitro capacitation of boar sperm. Molecular Reproduction and Development, 1990, 27, 249-253.	2.0	14
28	Reducing endogenous estrogen during prepuberal life does not affect boar libido or sperm fertilizing potential. Theriogenology, 2014, 82, 627-635.	2.1	12
29	Porcine Sertoli Cell Proliferation after Androgen Receptor Inactivation1. Biology of Reproduction, 2015, 92, 93.	2.7	11
30	Suppression of endogenous estrogen during development affects porcine epididymal sperm maturation. Molecular Reproduction and Development, 2006, 73, 1122-1128.	2.0	10
31	Presence of Arylsulfatase A and Sulfogalactosylglycerolipid in Mouse Ovaries: Localization to the Corpus Luteum. Endocrinology, 2008, 149, 3942-3951.	2.8	10
32	Inhibition of Sperm Motility by Bovine Serum Components1. Biology of Reproduction, 1990, 42, 545-551.	2.7	9
33	ldentification of porcine sperm plasma membrane proteins that may play a role in sperm–egg fusion. Zygote, 1995, 3, 163-170.	1.1	9
34	Fertilization in ungulates. Animal Reproduction Science, 1996, 42, 351-360.	1.5	8
35	Male Effects on Reproductive Performance. Journal of Animal Science, 1998, 76, 47.	0.5	8
36	Tissue steroid levels in response to reduced testicular estrogen synthesis in the male pig, Sus scrofa. PLoS ONE, 2019, 14, e0215390.	2.5	8

Trish Berger

#	Article	IF	CITATIONS
37	Are testicular cortisol and WISP2 involved in estrogen-regulated Sertoli cell proliferation?. Animal Reproduction Science, 2019, 207, 44-51.	1.5	6
38	Development of a zona-free hamster ova bioassay for goat sperm. Theriogenology, 1989, 32, 69-77.	2.1	5
39	Identification of homologous binding proteins in porcine and bovine gametes. , 2000, 55, 446-451.		3
40	Changes in testicular gene expression following reduced estradiol synthesis: A complex pathway to increased porcine Sertoli cell proliferation. Molecular and Cellular Endocrinology, 2021, 523, 111099.	3.2	3
41	Increased testicular estradiol during the neonatal interval reduces Sertoli cell numbers. Animal Reproduction Science, 2018, 189, 146-151.	1.5	2
42	Multifaceted epigenetic regulation of porcine testicular aromatase. Molecular and Cellular Endocrinology, 2021, 541, 111526.	3.2	0