
Pablo Cabral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and Evaluation of 2-Amino-7-Fluorophenazine 5,10-Dioxide Polymeric Micelles as Antitumoral Agents for 4T1 Breast Cancer. Polymers, 2022, 14, 71.	4.5	2
2	T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals, 2022, 15, 15.	3.8	10
3	Glucosylated Polymeric Micelles Actively Target a Breast Cancer Model. Advanced Therapeutics, 2021, 4, .	3.2	12
4	Radio―and Fluorescentâ€Labeling of Rituximab Based on the Inverse Electron Demand Dielsâ€Alder Reaction. ChemistrySelect, 2021, 6, 1894-1899.	1.5	1
5	99mTc Stearyl 6-(benzylidenehydrazinyl) nicotinamide Liposomes as Tumor Permeability Evaluation Tracer. AAPS PharmSciTech, 2021, 22, 115.	3.3	2
6	99mTechnetium- or Cy7-Labeled Fab(Tocilizumab) as Potential Multiple Myeloma Imaging Agents. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 1883-1893.	1.7	6
7	Mannose receptor 1 expression does not determine the uptake of high-density mannose dendrimers by activated macrophages populations. PLoS ONE, 2020, 15, e0240455.	2.5	5
8	Bimodal Therapeutic Agents Against Glioblastoma, One of the Most Lethal Forms of Cancer. Chemistry - A European Journal, 2020, 26, 14335-14340.	3.3	34
9	Sgc8-c Aptamer as a Potential Theranostic Agent for Hemato-Oncological Malignancies. Cancer Biotherapy and Radiopharmaceuticals, 2020, 35, 262-270.	1.0	17
10	Selective Hypoxiaâ€Cytotoxin 7â€Fluoroâ€2â€Aminophenazine 5,10â€Dioxide: Toward "Candidateâ€toâ€D the Drugâ€Development Pipeline. ChemistrySelect, 2019, 4, 9396-9402.	ug―Stag 1.5	ge in
11	Carboranylanilinoquinazoline EGFR-inhibitors: towardÂâ€~lead-to-candidate' stage in the drug-development pipeline. Future Medicinal Chemistry, 2019, 11, 2273-2285.	2.3	17
12	Potencial empleo del heptapéptido ATWLPPR como agente de imagen molecular del angiogénesis tumoral. Salud Militar, 2019, 38, .	0.0	0
13	Derivatizations of Sgc8â€c aptamer to prepare metallic radiopharmaceuticals as imaging diagnostic agents: Syntheses, isolations, and physicochemical characterizations. Chemical Biology and Drug Design, 2018, 91, 747-755.	3.2	10
14	Discovery of Potent EGFR Inhibitors through the Incorporation of a 3Dâ€Aromaticâ€Boronâ€Richâ€Cluster into the 4â€Anilinoquinazoline Scaffold: Potential Drugs for Glioma Treatment. Chemistry - A European Journal, 2018, 24, 3122-3126.	3.3	54
15	Evaluation of chromosomal aberrations induced by ¹⁸⁸ Re-dendrimer nanosystem on B16f1 melanoma cells. International Journal of Radiation Biology, 2018, 94, 664-670.	1.8	5
16	Synthesis of hydrophilic HYNIC-[1,2,4,5]tetrazine conjugates and their use in antibody pretargeting with99mTc. Organic and Biomolecular Chemistry, 2018, 16, 5275-5285.	2.8	14
17	Microwave-assisted solid-phase synthesis of nicotinyl hydrazones for use in radiochemistry of technetium-99m. Arkivoc, 2018, 2018, 29-38.	0.5	1
18	99mTc radiolabeled archaeosomes as a potential melanoma imaging agent. Proceedings of Anticancer Research, 2018, 2, .	0.1	0

PABLO CABRAL

#	Article	IF	CITATIONS
19	Cy7-Tocilizumab/Fab(Tocilizumab): Near Infrared Fluorescence In Vivo Imaging of Multiple Myeloma. Blood, 2018, 132, 5621-5621.	1.4	1
20	Technetium-99m- or Cy7-Labeled Rituximab as an Imaging Agent for Non-Hodgkin Lymphoma. Oncology, 2017, 92, 229-242.	1.9	15
21	Smallâ€Molecule Kinaseâ€Inhibitorsâ€Loaded Boron Cluster as Hybrid Agents for Gliomaâ€Cellâ€Targeting Therapy. Chemistry - A European Journal, 2017, 23, 9233-9238.	3.3	50
22	Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept. Bioorganic and Medicinal Chemistry, 2017, 25, 1163-1171.	3.0	41
23	Radiopharmaceuticals in Tumor Hypoxia Imaging: A Review Focused on Medicinal Chemistry Aspects. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 318-332.	1.7	9
24	The Effect of A Hexanoic Acid Linker Insertion on the Pharmacokinetics and Tumor Targeting Properties of the Melanoma Imaging Agent 99mTc-HYNIC-cycMSH. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1144-1152.	1.7	1
25	177Lu-DOTA-Bevacizumab: Radioimmunotherapy Agent for Melanoma. Current Radiopharmaceuticals, 2017, 10, 21-28.	0.8	6
26	In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. Journal of Nanobiotechnology, 2016, 14, 45.	9.1	37
27	99mTc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging. Bioorganic and Medicinal Chemistry, 2016, 24, 1209-1215.	3.0	43
28	Imaging Radiation Doses and Associated Risks and Benefits in Subjects Participating in Breast Cancer Clinical Trials. Oncologist, 2015, 20, 702-712.	3.7	6
29	Increasing the potency of neutralizing single-domain antibodies by functionalization with a CD11b/CD18 binding domain. MAbs, 2015, 7, 820-828.	5.2	15
30	Technetium glucose complexes as potential cancer imaging agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4254-4259.	2.2	10
31	99m technetium-Tocilizumab Fragments As Molecular Imaging Agent for Multiple Myeloma. Blood, 2015, 126, 4214-4214.	1.4	1
32	[^{99m} Tc(CO) ₃] ⁺ and [^{99m} TcO ₂] ⁺ Radiolabeled Cyclic Melanotropin Peptides for Melanoma SPECT Imaging. Current Radiopharmaceuticals, 2014, 7, 63-74.	0.8	4
33	Microwave-assisted Synthesis of HYNIC Protected Analogue for ^{99m} Tc Labeled Antibody. Current Radiopharmaceuticals, 2014, 7, 84-90.	0.8	13
34	99mTc-Labeled Bevacizumab via HYNIC for Imaging of Melanoma. Journal of Analytical Oncology, 2014, 3, .	0.1	5
35	[99mTc(CO)3]-Radiolabeled Bevacizumab: In vitro and in vivo Evaluation in a Melanoma Model. Oncology, 2013, 84, 200-209.	1.9	18
36	Cell uptake mechanisms of PAMAM G4-FITC dendrimer in human myometrial cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	14

PABLO CABRAL

#	Article	IF	CITATIONS
37	Synthesis and Evaluation of 99mTc Chelate-conjugated Bevacizumab. Current Radiopharmaceuticals, 2013, 6, 12-19.	0.8	7
38	Synthesis of 99mTc-Nimotuzumab with Tricarbonyl Ion: in vitro and in vivo Studies. Current Radiopharmaceuticals, 2012, 5, 59-64.	0.8	2
39	Evaluation of 99mTc-glucarate as a breast cancer imaging agent in a xenograft animal model. Nuclear Medicine and Biology, 2011, 38, 255-260.	0.6	26
40	Development of 99mTc(CO)3-dendrimer-FITC for cancer imaging. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5598-5601.	2.2	20
41	Biological evaluation of glucose and deoxyglucose derivatives radiolabeled with [99mTc(CO)3(H2O)3]+ core as potential melanoma imaging agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7102-7106.	2.2	19
42	Preparation and Primary Bioevaluation of 99mTc-labeled-1-thio-β-D-Glucose as Melanoma Targeting Agent. Current Radiopharmaceuticals, 2011, 4, 355-360.	0.8	9
43	In Vitro and In Vivo Evaluation of [99mTc(CO)3]-Radiolabeled ErbB-2-Targeting Peptides for Breast Carcinoma Imaging. Current Radiopharmaceuticals, 2010, 3, 308-321.	0.8	4
44	Evaluation of Patients with Head and Neck Cancer by Means of 99mTc-Glucarate. Journal of Nuclear Medicine Technology, 2009, 37, 229-232.	0.8	7