## **Zhoufeng Bian**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122137/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Review on Bimetallic Nickelâ€Based Catalysts for CO <sub>2</sub> Reforming of Methane.<br>ChemPhysChem, 2017, 18, 3117-3134.                                                                               | 2.1  | 395       |
| 2  | Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke<br>resistance and mechanistic insights. Applied Catalysis B: Environmental, 2018, 230, 220-236.             | 20.2 | 370       |
| 3  | Design of highly stable and selective core/yolk–shell nanocatalysts—A review. Applied Catalysis B:<br>Environmental, 2016, 188, 324-341.                                                                     | 20.2 | 249       |
| 4  | Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica<br>for dry reforming of methane. Applied Catalysis B: Environmental, 2016, 195, 1-8.                     | 20.2 | 178       |
| 5  | Highly carbon-resistant Ni–Co/SiO 2 catalysts derived from phyllosilicates for dry reforming of methane. Journal of CO2 Utilization, 2017, 18, 345-352.                                                      | 6.8  | 178       |
| 6  | Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts. Applied Catalysis B: Environmental, 2021, 282, 119564.                                 | 20.2 | 145       |
| 7  | Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study. Catalysis Today, 2020, 347, 31-38.                                                              | 4.4  | 128       |
| 8  | A review on perovskite catalysts for reforming of methane to hydrogen production. Renewable and<br>Sustainable Energy Reviews, 2020, 134, 110291.                                                            | 16.4 | 114       |
| 9  | Sandwichâ€Like Silica@Ni@Silica Multicore–Shell Catalyst for the Lowâ€Temperature Dry Reforming of<br>Methane: Confinement Effect Against Carbon Formation. ChemCatChem, 2018, 10, 320-328.                  | 3.7  | 109       |
| 10 | Preparation, characterization and catalytic application of phyllosilicate: A review. Catalysis Today, 2020, 339, 3-23.                                                                                       | 4.4  | 108       |
| 11 | Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni CeO2<br>catalyst: Kinetics and DRIFTS studies. International Journal of Hydrogen Energy, 2018, 43, 15191-15204. | 7.1  | 104       |
| 12 | Ni-phyllosilicate structure derived Ni–SiO <sub>2</sub> –MgO catalysts for bi-reforming applications:<br>acidity, basicity and thermal stability. Catalysis Science and Technology, 2018, 8, 1730-1742.      | 4.1  | 101       |
| 13 | Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: Effect of calcination temperature.<br>International Journal of Hydrogen Energy, 2021, 46, 31041-31053.                                            | 7.1  | 82        |
| 14 | Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers. Fuel, 2018, 222, 185-192.                                                        | 6.4  | 74        |
| 15 | A highly active and stable Ni–Mg phyllosilicate nanotubular catalyst for ultrahigh temperature<br>water-gas shift reaction. Chemical Communications, 2015, 51, 16324-16326.                                  | 4.1  | 54        |
| 16 | Influence of Calcination Temperature on Activity and Selectivity of Ni–CeO2 and Ni–CeO.8ZrO.2O2<br>Catalysts for CO2 Methanation. Topics in Catalysis, 2018, 61, 1514-1527.                                  | 2.8  | 45        |
| 17 | Zr–Ce-incorporated Ni/SBA-15 catalyst for high-temperature water gas shift reaction: Methane<br>suppression by incorporated Zr and Ce. Journal of Catalysis, 2020, 387, 47-61.                               | 6.2  | 44        |
| 18 | Iron–oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation.<br>Journal of Materials Chemistry A, 2021, 9, 13008-13018.                                              | 10.3 | 43        |

ZHOUFENG BIAN

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High-performance catalytic perovskite hollow fiber membrane reactor for oxidative propane dehydrogenation. Journal of Membrane Science, 2019, 578, 36-42.                                                                             | 8.2  | 41        |
| 20 | Chemical looping glycerol reforming for hydrogen production by Ni@ZrO2 nanocomposite oxygen carriers. International Journal of Hydrogen Energy, 2018, 43, 13200-13211.                                                                | 7.1  | 40        |
| 21 | Mesoporous-Silica-Stabilized Cobalt(II) Oxide Nanoclusters for Propane Dehydrogenation. ACS Applied<br>Nano Materials, 2021, 4, 1112-1125.                                                                                            | 5.0  | 40        |
| 22 | Sulfur resistant La <sub>x</sub> Ce <sub>1â^'x</sub> Ni <sub>0.5</sub> Cu <sub>0.5</sub> O <sub>3</sub><br>catalysts for an ultra-high temperature water gas shift reaction. Catalysis Science and Technology,<br>2016, 6, 6569-6580. | 4.1  | 29        |
| 23 | CFD Simulation of a Hydrogen-Permeable Membrane Reactor for CO <sub>2</sub> Reforming of<br>CH <sub>4</sub> : The Interplay of the Reaction and Hydrogen Permeation. Energy & Fuels, 2020, 34,<br>12366-12378.                        | 5.1  | 29        |
| 24 | Minimum fluidization velocity of particles with different size distributions at elevated pressures and temperatures. Chemical Engineering Science, 2020, 216, 115555.                                                                 | 3.8  | 27        |
| 25 | Cu/SiO2 derived from copper phyllosilicate for low-temperature water-gas shift reaction: Role of Cu+<br>sites. International Journal of Hydrogen Energy, 2020, 45, 27078-27088.                                                       | 7.1  | 23        |
| 26 | Efficient and stable nanoporous functional composited electrocatalyst derived from Zn/Co-bimetallic<br>zeolitic imidazolate frameworks for oxygen reduction reaction in alkaline media. Electrochimica<br>Acta, 2019, 299, 610-617.   | 5.2  | 20        |
| 27 | Experimental study on oxy-fuel combustion behavior of lignite char and carbon transfer mechanism with isotopic tracing method. Chemical Engineering Journal, 2020, 386, 123977.                                                       | 12.7 | 17        |
| 28 | CFD simulation on hydrogen-membrane reactor integrating cyclohexane dehydrogenation and CO2 methanation reactions: A conceptual study. Energy Conversion and Management, 2021, 235, 113989.                                           | 9.2  | 15        |
| 29 | Chemical Looping Reforming of Glycerol for Continuous H2 Production by Moving-Bed Reactors:<br>Simulation and Experiment. Energy & Fuels, 2020, 34, 1841-1850.                                                                        | 5.1  | 13        |
| 30 | CO2 hydrogenation to CH4 over hydrothermal prepared ceria-nickel catalysts: Performance and mechanism study. Catalysis Today, 2021, , .                                                                                               | 4.4  | 12        |
| 31 | CO2 methanation on Ni-Ce0.8M0.2O2 (M=Zr, Sn or Ti) catalyst: Suppression of CO via formation of bridging carbonyls on nickel. Catalysis Today, 2023, 424, 113053.                                                                     | 4.4  | 7         |
| 32 | Simulation study on the performance of low-temperature water gas shift membrane reactor system.<br>International Journal of Hydrogen Energy, 2021, 46, 15595-15608.                                                                   | 7.1  | 5         |
| 33 | A CFD study on the performance of CO2 methanation in water-permeable membrane reactor system.<br>Reaction Chemistry and Engineering, 0, , .                                                                                           | 3.7  | 4         |
| 34 | A CFD study on H2-permeable membrane reactor for methane CO2 reforming: Effect of catalyst bed volume. International Journal of Hydrogen Energy, 2021, 46, 38336-38350.                                                               | 7.1  | 3         |
| 35 | CFD modelling and simulation of a zeolite catalytic membrane reactor for low temperature water-gas shift reaction. Chemical Engineering and Processing: Process Intensification, 2022, 178, 108994.                                   | 3.6  | 3         |