

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122052/publications.pdf Version: 2024-02-01

74EN

#	Article	IF	CITATIONS
1	Structural characterization of resistant starch isolated from Laird lentils (Lens culinaris) seeds subjected to different processing treatments. Food Chemistry, 2018, 263, 163-170.	8.2	86
2	Research advances on the formation mechanism of resistant starch type III: A review. Critical Reviews in Food Science and Nutrition, 2020, 60, 276-297.	10.3	81
3	Effect of natural fermentation on the structure and physicochemical properties of wheat starch. Carbohydrate Polymers, 2019, 218, 163-169.	10.2	76
4	Long- and short-range structural characteristics of pea starch modified by autoclaving, α-amylolysis, and pullulanase debranching. International Journal of Biological Macromolecules, 2018, 120, 650-656.	7.5	64
5	In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Research International, 2017, 92, 64-78.	6.2	51
6	Effect of kansui addition on dough rheology and quality characteristics of chickpea-wheat composite flour-based noodles and the underlying mechanism. Food Chemistry, 2019, 298, 125081.	8.2	51
7	A more pronounced effect of type III resistant starch <i>vs.</i> type II resistant starch on ameliorating hyperlipidemia in high fat diet-fed mice is associated with its supramolecular structural characteristics. Food and Function, 2020, 11, 1982-1995.	4.6	45
8	Understanding the multi-scale structural changes in starch and its physicochemical properties during the processing of chickpea, navy bean, and yellow field pea seeds. Food Chemistry, 2019, 289, 582-590.	8.2	41
9	Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT - Food Science and Technology, 2018, 92, 147-154.	5.2	37
10	Isolated Pea Resistant Starch Substrates with Different Structural Features Modulate the Production of Short-Chain Fatty Acids and Metabolism of Microbiota in Anaerobic Fermentation In Vitro. Journal of Agricultural and Food Chemistry, 2021, 69, 5392-5404.	5.2	31
11	Insights into the supramolecular structure and techno-functional properties of starch isolated from oat rice kernels subjected to different processing treatments. Food Chemistry, 2020, 317, 126464.	8.2	29
12	Resistant starch isolated from enzymatic, physical, and acid treated pea starch: Preparation, structural characteristics, and in vitro bile acid capacity. LWT - Food Science and Technology, 2019, 116, 108541.	5.2	28
13	Effect of processing on the in vitro digestion characteristics of oat products by using a dynamic rat stomach-duodenum model. Journal of Functional Foods, 2019, 61, 103277.	3.4	11
14	Determination of polyphenols in oats by near-infrared spectroscopy (NIRS) and two-dimensional correlation spectroscopy. Analytical Letters, 2019, 52, 962-971.	1.8	8
15	Structural modification and dynamic <i>in vitro</i> fermentation profiles of precooked pea starch as affected by different drying methods. Food and Function, 2021, 12, 12706-12723.	4.6	5
16	Anti-hyperlipidemic and ameliorative effects of chickpea starch and resistant starch in mice with high fat diet induced obesity are associated with their multi-scale structural characteristics. Food and Function, 2022, 13, 5135-5152.	4.6	4