Waldo Cerpa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The metabolite <scp><i>p</i></scp> â€cresol impairs dendritic development, synaptogenesis, and synapse function in hippocampal neurons: Implications for autism spectrum disorder. Journal of Neurochemistry, 2022, 161, 335-349.	2.1	9
2	The functional and molecular effects of problematic alcohol consumption on skeletal muscle: a focus on athletic performance. American Journal of Drug and Alcohol Abuse, 2022, 48, 133-147.	1.1	11
3	Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cellular and Molecular Neurobiology, 2021, 41, 1413-1430.	1.7	41
4	Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biological Research, 2021, 54, 5.	1.5	5
5	Traumatic Brain Injury: Mechanisms of Clial Response. Frontiers in Physiology, 2021, 12, 740939.	1.3	70
6	Regulation of Phosphorylated State of NMDA Receptor by STEP61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants, 2021, 10, 1575.	2.2	9
7	WNT Signaling Is a Key Player in Alzheimer's Disease. Handbook of Experimental Pharmacology, 2021, 269, 357-382.	0.9	6
8	Neuronal surface P antigen (NSPA) modulates postsynaptic NMDAR stability through ubiquitination of tyrosine phosphatase PTPMEG. BMC Biology, 2020, 18, 164.	1.7	6
9	Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells, 2020, 9, 2402.	1.8	5
10	Alcohol consumption during adolescence alters the hippocampal response to traumatic brain injury. Biochemical and Biophysical Research Communications, 2020, 528, 514-519.	1.0	19
11	Tau Deletion Prevents Cognitive Impairment and Mitochondrial Dysfunction Age Associated by a Mechanism Dependent on Cyclophilin-D. Frontiers in Neuroscience, 2020, 14, 586710.	1.4	14
12	Stimulation of Melanocortin Receptor-4 (MC4R) Prevents Mitochondrial Damage Induced by Binge Ethanol Protocol in Adolescent Rat Hippocampus. Neuroscience, 2020, 438, 70-85.	1.1	8
13	Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug and Alcohol Dependence, 2019, 205, 107628.	1.6	28
14	Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Frontiers in Behavioral Neuroscience, 2019, 13, 288.	1.0	31
15	Age-related NMDA signaling alterations in SOD2 deficient mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2010-2020.	1.8	15
16	Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Frontiers in Cellular Neuroscience, 2018, 12, 472.	1.8	34
17	Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biology, 2018, 18, 279-294.	3.9	60
18	The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model. Human Molecular Genetics, 2018, 27, 2913-2926.	1.4	29

WALDO CERPA

#	Article	IF	CITATIONS
19	Adolescent Binge Alcohol Exposure Affects the Brain Function Through Mitochondrial Impairment. Molecular Neurobiology, 2017, 55, 4473-4491.	1.9	31
20	Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and AÎ ² Aggregates in Hippocampal Neurons: the Role of Mitochondria. Molecular Neurobiology, 2017, 54, 7116-7128.	1.9	56
21	Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication. Birth Defects Research, 2017, 109, 1623-1639.	0.8	33
22	New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Frontiers in Cellular Neuroscience, 2017, 11, 90.	1.8	17
23	Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plasticity, 2016, 2016, 1-20.	1.0	111
24	Modulation of the NMDA Receptor Through Secreted Soluble Factors. Molecular Neurobiology, 2016, 53, 299-309.	1.9	17
25	RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4797-4802.	3.3	39
26	Wnt5a inhibits K+ currents in hippocampal synapses through nitric oxide production. Molecular and Cellular Neurosciences, 2015, 68, 314-322.	1.0	15
27	Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochemical and Biophysical Research Communications, 2014, 444, 189-194.	1.0	39
28	Andrographolide reduces cognitive impairment in young and mature AÎ ² PPswe/PS-1 mice. Molecular Neurodegeneration, 2014, 9, 61.	4.4	95
29	Regulation of NMDA-Receptor Synaptic Transmission by Wnt Signaling. Journal of Neuroscience, 2011, 31, 9466-9471.	1.7	136
30	Wnt signaling modulates pre―and postsynaptic maturation: Therapeutic considerations. Developmental Dynamics, 2010, 239, 94-101.	0.8	30
31	Wnt-5aoccludes Al ² oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Molecular Neurodegeneration, 2010, 5, 3.	4.4	107
32	Amyloid-β Peptide Fibrils Induce Nitro-Oxidative Stress in Neuronal Cells. Journal of Alzheimer's Disease, 2010, 22, 641-652.	1.2	55
33	Wnt-5a/JNK Signaling Promotes the Clustering of PSD-95 in Hippocampal Neurons. Journal of Biological Chemistry, 2009, 284, 15857-15866.	1.6	187
34	Overexpression of amyloid precursor protein increases copper content in HEK293 cells. Biochemical and Biophysical Research Communications, 2009, 382, 740-744.	1.0	15
35	β-Amyloid Oligomers Affect the Structure and Function of the Postsynaptic Region: Role of the & & & & & & & & & & & & & & & & & & &	0.8	31
36	Wnt-7a Modulates the Synaptic Vesicle Cycle and Synaptic Transmission in Hippocampal Neurons. Journal of Biological Chemistry, 2008, 283, 5918-5927.	1.6	205

WALDO CERPA

#	Article	IF	CITATIONS
37	Structure-Function Implications in Alzheimers Disease: Effect of Aβ Oligomers at Central Synapses. Current Alzheimer Research, 2008, 5, 233-243.	0.7	91
38	Copper brain homeostasis: Role of amyloid precursor protein and prion protein. IUBMB Life, 2005, 57, 645-650.	1.5	23
39	Is there a role for copper in neurodegenerative diseases?. Molecular Aspects of Medicine, 2005, 26, 405-420.	2.7	65
40	Human-like rodent amyloid-β-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiology of Aging, 2005, 26, 1023-1028.	1.5	106
41	Acetylcholinesterase-Aβ Complexes Are More Toxic than Aβ Fibrils in Rat Hippocampus. American Journal of Pathology, 2004, 164, 2163-2174.	1.9	128