Guo-Wei Le

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1121968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. Physiology and Behavior, 2015, 138, 325-331.	1.0	76
2	Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food and Function, 2019, 10, 5952-5968.	2.1	67
3	Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H ₂ S production. Food and Function, 2019, 10, 61-77.	2.1	60
4	Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. Journal of Functional Foods, 2015, 14, 424-434.	1.6	59
5	Sodium butyrate protects against oxidative stress in HepG2 cells through modulating Nrf2 pathway and mitochondrial function. Journal of Physiology and Biochemistry, 2016, 73, 405-414.	1.3	53
6	Oxidized casein impairs antioxidant defense system and induces hepatic and renal injury in mice. Food and Chemical Toxicology, 2014, 64, 86-93.	1.8	52
7	Antihypertensive effect of alcalase generated mung bean protein hydrolysates in spontaneously hypertensive rats. European Food Research and Technology, 2006, 222, 733-736.	1.6	48
8	Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet. Nutrients, 2016, 8, 799.	1.7	48
9	High-fat-diet–induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer's patches. Nutrition, 2016, 32, 265-272.	1.1	47
10	Role of thyroid hormone homeostasis in obesity-prone and obesity-resistant mice fed a high-fat diet. Metabolism: Clinical and Experimental, 2015, 64, 566-579.	1.5	44
11	Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. Journal of Agricultural and Food Chemistry, 2020, 68, 7745-7756.	2.4	39
12	Oxidized Pork Induces Oxidative Stress and Inflammation by Altering Gut Microbiota in Mice. Molecular Nutrition and Food Research, 2020, 64, e1901012.	1.5	37
13	Reducing, Radical Scavenging, and Chelation Properties of Fermented Soy Protein Meal Hydrolysate by <i>Lactobacillus plantarum</i> LP6. International Journal of Food Properties, 2011, 14, 654-665.	1.3	36
14	Dietary methionine restriction regulated energy and protein homeostasis by improving thyroid function in high fat diet mice. Food and Function, 2018, 9, 3718-3731.	2.1	36
15	Dietary methionine restriction ameliorates the impairment of learning and memory function induced by obesity in mice. Food and Function, 2019, 10, 1411-1425.	2.1	36
16	Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. Journal of Agricultural and Food Chemistry, 2017, 65, 6957-6971.	2.4	35
17	OPTIMIZED LACTOBACILLUS PLANTARUM LP6 SOLID-STATE FERMENTATION AND PROTEOLYTIC HYDROLYSIS IMPROVE SOME NUTRITIONAL ATTRIBUTES OF SOYBEAN PROTEIN MEAL. Journal of Food Biochemistry, 2011, 35, 1686-1694.	1.2	32
18	Dietary oxidized tyrosine (O-Tyr) stimulates TGF-β1-induced extracellular matrix production via the JNK/p38 signaling pathway in rat kidneys. Amino Acids, 2017, 49, 241-260.	1.2	31

Guo-Wei Le

#	Article	IF	CITATIONS
19	Dityrosine administration induces novel object recognition deficits in young adulthood mice. Physiology and Behavior, 2016, 164, 292-299.	1.0	27
20	Structural and Antioxidant Modification of Wheat Peptides Modified by the Heat and Lipid Peroxidation Product Malondialdehyde. Journal of Food Science, 2012, 77, H16-22.	1.5	26
21	Isolation of <i>lactobacillus reuteri</i> from Peyer's patches and their effects on sIgA production and gut microbiota diversity. Molecular Nutrition and Food Research, 2016, 60, 2020-2030.	1.5	26
22	Aqueous extracts from asparagus stems prevent memory impairments in scopolamine-treated mice. Food and Function, 2017, 8, 1460-1467.	2.1	26
23	Evaluation of Antimicrobial, Antioxidant Activities, and Nutritional Values of Fermented Foxtail Millet Extracts by <i>Lactobacillus paracasei</i> Fn032. International Journal of Food Properties, 2013, 16, 1179-1190.	1.3	25
24	Processing milk causes the formation of protein oxidation products which impair spatial learning and memory in rats. RSC Advances, 2019, 9, 22161-22175.	1.7	25
25	Dietary methionine restriction improves glucose metabolism in the skeletal muscle of obese mice. Food and Function, 2019, 10, 2676-2690.	2.1	25
26	Association Between Thyroid Hormones, Lipids and Oxidative Stress Markers in Subclinical Hypothyroidism / Povezanost IzmeU Tireoidnih Hormona, Lipida I Markera Oksidativnog Stresa U SubkliniĉKoj Hipotireozi. Journal of Medical Biochemistry, 2015, 34, 323-331.	0.7	24
27	Dietary Methionine Restriction Upregulates Endogenous H ₂ S via miRâ€328â€3p: A Potential Mechanism to Improve Liver Protein Metabolism Efficiency in a Mouse Model of Highâ€fatâ€dietâ€induced Obesity. Molecular Nutrition and Food Research, 2019, 63, e1800735.	1.5	24
28	Effect of dietary oxidized tyrosine products on insulin secretion via the oxidative stress-induced mitochondria damage in mice pancreas. RSC Advances, 2017, 7, 26809-26826.	1.7	22
29	Antioxidant Activities of Roselle <i>(Hibiscus Sabdariffa L.</i>) Seed Protein Hydrolysate and its Derived Peptide Fractions. International Journal of Food Properties, 2014, 17, 1998-2011.	1.3	20
30	Dityrosine administration induces dysfunction of insulin secretion accompanied by diminished thyroid hormones T3 function in pancreas of mice. Amino Acids, 2017, 49, 1401-1414.	1.2	20
31	Spatial Learning and Memory Impairment in Growing Mice Induced by Major Oxidized Tyrosine Product Dityrosine. Journal of Agricultural and Food Chemistry, 2019, 67, 9039-9049.	2.4	20
32	24-Week Exposure to Oxidized Tyrosine Induces Hepatic Fibrosis Involving Activation of the MAPK/TGF- <i>β</i> 1 Signaling Pathway in Sprague-Dawley Rats Model. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	19
33	Dietary methionine restriction improves the impairment of cardiac function in middle-aged obese mice. Food and Function, 2020, 11, 1764-1778.	2.1	17
34	Role of miR-383 and miR-146b in different propensities to obesity in male mice. Journal of Endocrinology, 2017, 234, 201-216.	1.2	16
35	Metabolomic studies on the systemic responses of mice with oxidative stress induced by short-term oxidized tyrosine administration. RSC Advances, 2017, 7, 28591-28605.	1.7	16
36	Oxidized Pork Induces Disorders of Glucose Metabolism inÂMice. Molecular Nutrition and Food Research, 2021, 65, e2000859.	1.5	14

Guo-Wei Le

#	ARTICLE	IF	CITATIONS
37	Disparities in the Prevalence of Metabolic Syndrome (MS) and its Components Among University Employees by Age, Gender and Occupation. Journal of Clinical and Diagnostic Research JCDR, 2014, 8, 65-9.	0.8	12
38	Effects of dietary oxidized tyrosine products on insulin secretion via the thyroid hormone T3-regulated TRβ1–Akt–mTOR pathway in the pancreas. RSC Advances, 2017, 7, 54610-54625.	1.7	12
39	Oxidized Pork Induces Hepatic Steatosis by Impairing Thyroid Hormone Function in Mice. Molecular Nutrition and Food Research, 2022, 66, e2100602.	1.5	11
40	Molecular determinants of thyroid hormone receptor selectivity in a series of phosphonic acid derivatives: 3D-QSAR analysis and molecular docking. Chemico-Biological Interactions, 2015, 240, 324-335.	1.7	9
41	Effect of different levels of dietary methionine restriction on relieving oxidative stress and behavioral deficits in middle-aged mice fed low-, medium-, or high-fat diet. Journal of Functional Foods, 2020, 65, 103782.	1.6	9
42	Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2251-2267.	2.0	8
43	The effect of diet with different glycemic index on the redox status of duodenums in mice and its underlying mechanism. European Food Research and Technology, 2010, 230, 935-941.	1.6	7
44	Metabolomics Based on 1H-NMR Reveal the Regulatory Mechanisms of Dietary Methionine Restriction on Splenic Metabolic Dysfunction in Obese Mice. Foods, 2021, 10, 2439.	1.9	6
45	Chemical Space Charting of Different Parts of Inula nervosa Wall.: Upregulation of Expression of Nrf2 and Correlated Antioxidants Enzymes. Molecules, 2020, 25, 4789.	1.7	5
46	Antioxidant and antibacterial activities of extracts from Conyza bonariensis growing in Yemen. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 129-34.	0.2	5
47	In silico study on β-aminoketone derivatives as thyroid hormone receptor inhibitors: a combined 3D-QSAR and molecular docking study. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1-13.	2.0	4
48	Dityrosine suppresses the cytoprotective action of thyroid hormone T3viainhibiting thyroid hormone receptor-mediated transcriptional activation. RSC Advances, 2020, 10, 21057-21070.	1.7	4
49	High dietary methionine intake may contribute to the risk of nonalcoholic fatty liver disease by inhibiting hepatic H2S production. Food Research International, 2022, 158, 111507.	2.9	4
50	Probing the structural requirements for thyroid hormone receptor inhibitory activity of sulfonylnitrophenylthiazoles (SNPTs) using 2D-QSAR and 3D-QSAR approaches. Medicinal Chemistry Research, 2017, 26, 344-360.	1.1	2