Neil Sinclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11218507/publications.pdf

Version: 2024-02-01

331670 526287 2,703 34 21 27 citations h-index g-index papers 34 34 34 2044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	4.6	152
2	Sample-Efficient Adaptive Calibration of Quantum Networks Using Bayesian Optimization. Physical Review Applied, 2022, 17, .	3.8	5
3	Integrated silicon carbide electro-optic modulator. Nature Communications, 2022, 13, 1851.	12.8	46
4	Diamond mirrors for high-power continuous-wave lasers. Nature Communications, 2022, 13, 2610.	12.8	9
5	Electrical control of surface acoustic waves. Nature Electronics, 2022, 5, 348-355.	26.0	22
6	Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 2021, 13, 242.	25.5	503
7	Telecommunication-wavelength two-dimensional photonic crystal cavities in a thin single-crystal diamond membrane. Applied Physics Letters, 2021, 119, .	3.3	4
8	Long-Lived Solid-State Optical Memory for High-Rate Quantum Repeaters. Physical Review Letters, 2021, 127, 220502.	7.8	29
9	On-chip electro-optic frequency shifters and beam splitters. Nature, 2021, 599, 587-593.	27.8	78
10	Coherent acoustic control of a single silicon vacancy spin in diamond. Nature Communications, 2020, 11, 193.	12.8	92
11	Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nature Photonics, 2020, 14, 250-255.	31.4	285
12	Perspectives on quantum transduction. Quantum Science and Technology, 2020, 5, 020501.	5.8	155
13	Acoustically Mediated Microwave-to-Optical Conversion on Thin-Film Lithium Niobate., 2020,,.		0
14	Non-reciprocal transmission of microwave acoustic waves in nonlinear parity–time symmetric resonators. Nature Electronics, 2020, 3, 267-272.	26.0	73
15	Teleportation Systems Toward a Quantum Internet. PRX Quantum, 2020, 1, .	9.2	54
16	Toward Efficient Microwave-Optical Transduction using Cavity Electro-Optics in Thin-Film Lithium Niobate., 2020,,.		6
17	Low-repetition-rate Integrated Electro-optic Frequency Comb Sources. , 2020, , .		1
18	Persistent atomic frequency comb based on Zeeman sub-levels of an erbium-doped crystal waveguide. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 352.	2.1	10

#	Article	IF	CITATIONS
19	High-Q suspended optical resonators in 3C silicon carbide obtained by thermal annealing. Optics Express, 2020, 28, 4938.	3.4	19
20	Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Optics Express, 2020, 28, 23728.	3.4	43
21	Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica, 2020, 7, 1714.	9.3	66
22	Integrated Lithium Niobate Acousto-optic Cavities for Microwave-to-optical Conversion. , 2020, , .		1
23	Nanophotonic Quantum Storage at Telecommunication Wavelength. Physical Review Applied, 2019, 12, .	3.8	46
24	Storage and Reemission of Heralded Telecommunication-Wavelength Photons Using a Crystal Waveguide. Physical Review Applied, 2019, 11 , .	3.8	40
25	Telecom-Band Quantum Optics with Ytterbium Atoms and Silicon Nanophotonics. Physical Review Applied, 2019, 11, .	3.8	39
26	Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 2019, 6, 1498.	9.3	152
27	Spectral Multiplexing for Scalable Quantum Photonics using an Atomic Frequency Comb Quantum Memory and Feed-Forward Control. Physical Review Letters, 2014, 113, 053603.	7.8	214
28	Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories. Nature Communications, 2013, 4, 2386.	12.8	23
29	Frequency multiplexed quantum memories with read-out on demand for quantum repeaters. , 2013, , .		0
30	Conditional Detection of Pure Quantum States of Light after Storage in a Tm-Doped Waveguide. Physical Review Letters, 2012, 108, 083602.	7.8	41
31	Controllable-dipole quantum memory. Physical Review A, 2012, 86, .	2.5	13
32	Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469, 512-515.	27.8	481
33	Broadband waveguide quantum memory for entangled photons. , 2011, , .		0
34	Broadband Waveguide Quantum Memory for Entangled Photons. , 2011, , .		1