
Ji-Guang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1121752/publications.pdf Version: 2024-02-01

ILCUANC ZHANC

#	Article	IF	CITATIONS
1	Lithium metal anodes for rechargeable batteries. Energy and Environmental Science, 2014, 7, 513-537.	30.8	3,665
2	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	39.5	2,101
3	High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6, 6362.	12.8	1,954
4	Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society, 2013, 135, 4450-4456.	13.7	1,736
5	A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Advanced Science, 2016, 3, 1500213.	11.2	1,306
6	Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 2014, 5, 4105.	12.8	1,160
7	Advancing Lithium Metal Batteries. Joule, 2018, 2, 833-845.	24.0	1,052
8	Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy, 2017, 2, .	39.5	1,048
9	Hierarchically Porous Graphene as a Lithium–Air Battery Electrode. Nano Letters, 2011, 11, 5071-5078.	9.1	943
10	Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano, 2013, 7, 760-767.	14.6	772
11	Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3, 739-746.	39.5	767
12	Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized High oncentration Electrolytes. Advanced Materials, 2018, 30, e1706102.	21.0	761
13	Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1702097.	19.5	704
14	Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Central Science, 2016, 2, 790-801.	11.3	662
15	Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 2017, 8, 14101.	12.8	654
16	Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries. CheM, 2018, 4, 1877-1892.	11.7	628
17	Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Nano Letters, 2014, 14, 2345-2352.	9.1	623
18	Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy, 2019, 4, 796-805.	39.5	621

#	Article	IF	CITATIONS
19	Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nature Energy, 2018, 3, 600-605.	39.5	613
20	Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019, 3, 1662-1676.	24.0	598
21	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	39.5	557
22	Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5, 561-568.	39.5	526
23	Anodeâ€Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 2016, 26, 7094-7102.	14.9	495
24	High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nature Energy, 2019, 4, 551-559.	39.5	492
25	High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Advanced Energy Materials, 2015, 5, 1402290.	19.5	483
26	Making Liâ€Air Batteries Rechargeable: Material Challenges. Advanced Functional Materials, 2013, 23, 987-1004.	14.9	477
27	Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science, 2020, 370, 1313-1317.	12.6	472
28	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nature Nanotechnology, 2019, 14, 594-601.	31.5	451
29	High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, 2018, 2, 1548-1558.	24.0	436
30	Highâ€Performance LiNi _{0.5} Mn _{1.5} O ₄ Spinel Controlled by Mn ³⁺ Concentration and Site Disorder. Advanced Materials, 2012, 24, 2109-2116.	21.0	434
31	Anodes for Rechargeable Lithium ulfur Batteries. Advanced Energy Materials, 2015, 5, 1402273.	19.5	423
32	Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews, 2020, 120, 13312-13348.	47.7	393
33	Li―and Mnâ€Rich Cathode Materials: Challenges to Commercialization. Advanced Energy Materials, 2017, 7, 1601284.	19.5	383
34	Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes. ACS Energy Letters, 2018, 3, 315-321.	17.4	373
35	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, 3, 1094-1105.	24.0	358
36	Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process. Nano Letters, 2013, 13, 3824-3830.	9.1	353

#	Article	IF	CITATIONS
37	Functioning Mechanism of AlF ₃ Coating on the Li- and Mn-Rich Cathode Materials. Chemistry of Materials, 2014, 26, 6320-6327.	6.7	333
38	Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Letters, 2014, 14, 6889-6896.	9.1	326
39	Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nature Energy, 2017, 2, 813-820.	39.5	326
40	<i>In Situ</i> TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS Nano, 2012, 6, 8439-8447.	14.6	321
41	Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nature Nanotechnology, 2019, 14, 602-608.	31.5	321
42	Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material. Chemistry of Materials, 2015, 27, 1381-1390.	6.7	311
43	New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Letters, 2017, 17, 7606-7612.	9.1	308
44	High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 896-902.	17.4	302
45	High Voltage Operation of Niâ€Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Advanced Energy Materials, 2018, 8, 1800297.	19.5	298
46	Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nature Communications, 2020, 11, 1474.	12.8	298
47	Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy, 2015, 15, 135-144.	16.0	297
48	Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nature Energy, 2021, 6, 723-732.	39.5	285
49	Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 11014.	6.7	280
50	Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries. Joule, 2018, 2, 110-124.	24.0	280
51	Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Nano Letters, 2014, 14, 2628-2635.	9.1	273
52	Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003092.	19.5	271
53	Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes. Nano Letters, 2013, 13, 6106-6112.	9.1	265
54	Evolution of Lattice Structure and Chemical Composition of the Surface Reconstruction Layer in Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium Ion Batteries. Nano Letters, 2015, 15, 514-522.	9.1	261

#	Article	IF	CITATIONS
55	Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. Journal of the Electrochemical Society, 2013, 160, A1894-A1901.	2.9	260
56	A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2059-2067.	17.4	257
57	Review—Localized High-Concentration Electrolytes for Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 010522.	2.9	257
58	Enabling room temperature sodium metal batteries. Nano Energy, 2016, 30, 825-830.	16.0	248
59	Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High oncentration Electrolyte Layer. Advanced Energy Materials, 2016, 6, 1502151.	19.5	236
60	Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries. Nano Letters, 2012, 12, 5186-5191.	9.1	231
61	Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 8464.	10.3	229
62	Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 2018, 49, 538-548.	16.0	213
63	Origin of lithium whisker formation and growth under stress. Nature Nanotechnology, 2019, 14, 1042-1047.	31.5	211
64	Effects of Electrolyte Salts on the Performance of Li–O ₂ Batteries. Journal of Physical Chemistry C, 2013, 117, 2635-2645.	3.1	204
65	Li ⁺ -Desolvation Dictating Lithium-Ion Battery's Low-Temperature Performances. ACS Applied Materials & Interfaces, 2017, 9, 42761-42768.	8.0	200
66	Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nature Communications, 2018, 9, 2437.	12.8	200
67	Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte. Journal of Power Sources, 2011, 196, 5674-5678.	7.8	197
68	The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries. Journal of Power Sources, 2012, 215, 240-247.	7.8	197
69	A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50, 589-597.	16.0	191
70	Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28603-28613.	7.1	191
71	Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318, 170-177.	7.8	186
72	Highâ€Performance Silicon Anodes Enabled By Nonflammable Localized Highâ€Concentration Electrolytes. Advanced Energy Materials, 2019, 9, 1900784.	19.5	175

#	Article	IF	CITATIONS
73	Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ for Li-Ion Batteries. Chemistry of Materials, 2013, 25, 2319-2326.	6.7	173
74	Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Physical Chemistry Chemical Physics, 2012, 14, 13515.	2.8	167
75	Glassy Li metal anode for high-performance rechargeable Li batteries. Nature Materials, 2020, 19, 1339-1345.	27.5	162
76	Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF ₆ and Cyclic Carbonate Additives. ACS Energy Letters, 2018, 3, 14-19.	17.4	161
77	Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Nano Letters, 2012, 12, 4124-4130.	9.1	160
78	Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nature Nanotechnology, 2017, 12, 535-539.	31.5	160
79	Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy, 2017, 40, 607-617.	16.0	160
80	Advanced Electrolytes for Fastâ€Charging Highâ€Voltage Lithiumâ€Ion Batteries in Wideâ€Temperature Range. Advanced Energy Materials, 2020, 10, 2000368.	19.5	159
81	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solidâ€State Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	21.0	156
82	Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18826-18835.	8.0	150
83	How to Obtain Reproducible Results for Lithium Sulfur Batteries?. Journal of the Electrochemical Society, 2013, 160, A2288-A2292.	2.9	149
84	Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries. Journal of the Electrochemical Society, 2010, 157, A219.	2.9	148
85	Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nature Nanotechnology, 2021, 16, 1113-1120.	31.5	147
86	Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage. Electrochemistry Communications, 2010, 12, 378-381.	4.7	145
87	Atomic Resolution Structural and Chemical Imaging Revealing the Sequential Migration of Ni, Co, and Mn upon the Battery Cycling of Layered Cathode. Nano Letters, 2017, 17, 3946-3951.	9.1	143
88	Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition. Advanced Functional Materials, 2018, 28, 1707234.	14.9	143
89	Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy and Environmental Science, 2020, 13, 2341-2362.	30.8	142
90	Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Advanced Functional Materials, 2017, 27, 1704391.	14.9	141

#	Article	IF	CITATIONS
91	Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy and Environmental Science, 2017, 10, 1427-1434.	30.8	140
92	Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by in Situ Transmission Electron Microscopy. Nano Letters, 2014, 14, 1293-1299.	9.1	137
93	Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7, 718-725.	39.5	137
94	Direct Observation of the Growth of Lithium Dendrites on Graphite Anodes by Operando ECâ€AFM. Small Methods, 2018, 2, 1700298.	8.6	133
95	A review on the stability and surface modification of layered transition-metal oxide cathodes. Materials Today, 2021, 46, 155-182.	14.2	132
96	Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	131
97	Probing the Degradation Mechanism of Li ₂ MnO ₃ Cathode for Li-Ion Batteries. Chemistry of Materials, 2015, 27, 975-982.	6.7	130
98	Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 12745.	6.7	129
99	Factors affecting the battery performance of anthraquinone-based organic cathode materials. Journal of Materials Chemistry, 2012, 22, 4032.	6.7	126
100	Atomic to Nanoscale Investigation of Functionalities of an Al ₂ O ₃ Coating Layer on a Cathode for Enhanced Battery Performance. Chemistry of Materials, 2016, 28, 857-863.	6.7	125
101	Dendriteâ€Free and Performanceâ€Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives. Advanced Energy Materials, 2018, 8, 1703022.	19.5	123
102	Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li LiCoO ₂ Batteries. Advanced Materials, 2020, 32, e2004898.	21.0	123
103	Improving Lithium–Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels. Nano Letters, 2017, 17, 3061-3067.	9.1	122
104	Highâ€Power Lithium Metal Batteries Enabled by Highâ€Concentration Acetonitrileâ€Based Electrolytes with Vinylene Carbonate Additive. Advanced Functional Materials, 2020, 30, 2001285.	14.9	121
105	Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery. ACS Nano, 2015, 9, 5559-5566.	14.6	118
106	Mechanism of Formation of Li ₇ P ₃ S ₁₁ Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials, 2018, 30, 990-997.	6.7	118
107	Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithiumâ€5ulfur Batteries. Advanced Functional Materials, 2016, 26, 3059-3066.	14.9	117
108	Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries. Nano Letters, 2015, 15, 7016-7022.	9.1	113

#	Article	IF	CITATIONS
109	Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases. ACS Energy Letters, 2019, 4, 2529-2534.	17.4	112
110	Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2469-2479.	8.0	110
111	Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co, and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials. Chemistry of Materials, 2015, 27, 5393-5401.	6.7	108
112	Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1901764.	19.5	108
113	Template free synthesis of LiV ₃ O ₈ nanorods as a cathode material for high-rate secondary lithium batteries. Journal of Materials Chemistry, 2011, 21, 1153-1161.	6.7	105
114	Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ . Journal of the Electrochemical Society, 2013, 160, A2212-A2219.	2.9	104
115	Enhanced Cycling Stability of Rechargeable Li–O ₂ Batteries Using High oncentration Electrolytes. Advanced Functional Materials, 2016, 26, 605-613.	14.9	104
116	Complete Decomposition of Li ₂ CO ₃ in Li–O ₂ Batteries Using Ir/B ₄ C as Noncarbon-Based Oxygen Electrode. Nano Letters, 2017, 17, 1417-1424.	9.1	104
117	Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy. Nano Letters, 2020, 20, 418-425.	9.1	102
118	Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transitionâ€Metal Oxide Cathodes. Advanced Energy Materials, 2016, 6, 1502455.	19.5	100
119	Stabilization of Li Metal Anode in DMSOâ€Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1602605.	19.5	99
120	A Micrometerâ€Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon. Advanced Materials, 2021, 33, e2103095.	21.0	99
121	Revisit Carbon/Sulfur Composite for Li-S Batteries. Journal of the Electrochemical Society, 2013, 160, A1624-A1628.	2.9	98
122	Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. ACS Energy Letters, 2020, 5, 3212-3220.	17.4	97
123	Localized High Concentration Electrolytes for High Voltage Lithium–Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability. Chemistry of Materials, 2020, 32, 5973-5984.	6.7	97
124	Bending-Induced Symmetry Breaking of Lithiation in Germanium Nanowires. Nano Letters, 2014, 14, 4622-4627.	9.1	92
125	Revealing Cycling Rate-Dependent Structure Evolution in Ni-Rich Layered Cathode Materials. ACS Energy Letters, 2018, 3, 2433-2440.	17.4	92
126	Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes. Nano Letters, 2017, 17, 1602-1609.	9.1	91

8

#	Article	IF	CITATIONS
127	Controlled Nucleation and Growth Process of Li ₂ S ₂ /Li ₂ S in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A1992-A1996.	2.9	89
128	Simultaneous Stabilization of LiNi _{0.76} Mn _{0.14} Co _{0.10} O ₂ Cathode and Lithium Metal Anode by Lithium Bis(oxalato)borate as Additive. ChemSusChem, 2018, 11, 2211-2220.	6.8	89
129	Detrimental Effects of Chemical Crossover from the Lithium Anode to Cathode in Rechargeable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2921-2930.	17.4	89
130	Ultrathin Li ₄ Ti ₅ O ₁₂ Nanosheets as Anode Materials for Lithium and Sodium Storage. ACS Applied Materials & amp; Interfaces, 2016, 8, 16718-16726.	8.0	87
131	Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes. ACS Energy Letters, 2021, 6, 1684-1693.	17.4	87
132	Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. Journal of Materials Chemistry A, 2014, 2, 2346.	10.3	85
133	Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Science Advances, 2021, 7, eabj3423.	10.3	84
134	Hierarchically Porous Carbon Materials for CO ₂ Capture: The Role of Pore Structure. Industrial & Engineering Chemistry Research, 2018, 57, 1262-1268.	3.7	83
135	Localized high concentration electrolyte behavior near a lithium–metal anode surface. Journal of Materials Chemistry A, 2019, 7, 25047-25055.	10.3	81
136	Solid–Liquid Interfacial Reaction Trigged Propagation of Phase Transition from Surface into Bulk Lattice of Ni-Rich Layered Cathode. Chemistry of Materials, 2018, 30, 7016-7026.	6.7	80
137	Tunable electrochemical properties of fluorinated graphene. Journal of Materials Chemistry A, 2013, 1, 7866.	10.3	74
138	Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy, 2015, 16, 143-151.	16.0	73
139	Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. Journal of Power Sources, 2016, 329, 323-329.	7.8	73
140	Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today, 2016, 11, 82-97.	11.9	73
141	The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials. Nano Today, 2016, 11, 678-694.	11.9	72
142	Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science, 2017, , .	0.6	70
143	Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5ÂV Li-ion battery applications. Journal of Power Sources, 2012, 213, 304-316.	7.8	69
144	Hierarchically Porous Graphitic Carbon with Simultaneously High Surface Area and Colossal Pore Volume Engineered <i>via</i> Ice Templating. ACS Nano, 2017, 11, 11047-11055.	14.6	69

#	Article	IF	CITATIONS
145	Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nature Nanotechnology, 2022, 17, 269-277.	31.5	69
146	The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries. Scientific Reports, 2016, 6, 34267.	3.3	67
147	Enabling High-Energy-Density Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23094-23102.	8.0	67
148	Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for Allâ€Vanadium Flow Batteries. ChemSusChem, 2016, 9, 1455-1461.	6.8	66
149	Optimized Al Doping Improves Both Interphase Stability and Bulk Structural Integrity of Ni-Rich NMC Cathode Materials. ACS Applied Energy Materials, 2020, 3, 3369-3377.	5.1	66
150	A stable nanoporous silicon anode prepared by modified magnesiothermic reactions. Nano Energy, 2016, 20, 68-75.	16.0	65
151	B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries. Nano Energy, 2017, 33, 195-204.	16.0	65
152	Polymerâ€inâ€â€œQuasiâ€lonic Liquid―Electrolytes for Highâ€Voltage Lithium Metal Batteries. Advanced Energ Materials, 2019, 9, 1902108.	⁵⁹ 19.5	65
153	Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Materials, 2021, 34, 76-84.	18.0	65
154	The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium–Oxygen Batteries. ChemSusChem, 2014, 7, 2436-2440.	6.8	62
155	Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 4932-4939.	9.1	62
156	Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. ACS Nano, 2020, 14, 4601-4608.	14.6	61
157	The Role of Secondary Particle Structures in Surface Phase Transitions of Ni-Rich Cathodes. Chemistry of Materials, 2020, 32, 2884-2892.	6.7	60
158	Excellent Cycling Stability of Sodium Anode Enabled by a Stable Solid Electrolyte Interphase Formed in Etherâ€Based Electrolytes. Advanced Functional Materials, 2020, 30, 2001151.	14.9	60
159	Dendrimerâ€Encapsulated Ruthenium Oxide Nanoparticles as Catalysts in Lithiumâ€Oxygen Batteries. Advanced Functional Materials, 2014, 24, 7510-7519.	14.9	59
160	Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. Journal of Power Sources, 2016, 307, 231-243.	7.8	58
161	Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate. ChemElectroChem, 2018, 5, 761-769.	3.4	58
162	Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. ACS Energy Letters, 2021, 6, 387-394.	17.4	58

#	Article	IF	CITATIONS
163	Anode-less. Nature Energy, 2019, 4, 637-638.	39.5	56
164	High performance Li-ion sulfur batteries enabled by intercalation chemistry. Chemical Communications, 2015, 51, 13454-13457.	4.1	55
165	Tailored Reaction Route by Micropore Confinement for Li–S Batteries Operating under Lean Electrolyte Conditions. Advanced Energy Materials, 2018, 8, 1800590.	19.5	55
166	Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nature Communications, 2020, 11, 3204.	12.8	55
167	Current Density Regulated Atomic to Nanoscale Process on Li Deposition and Solid Electrolyte Interphase Revealed by Cryogenic Transmission Electron Microscopy. ACS Nano, 2020, 14, 8766-8775.	14.6	54
168	Lithium Self-Discharge and Its Prevention: Direct Visualization through <i>In Situ</i> Electrochemical Scanning Transmission Electron Microscopy. ACS Nano, 2017, 11, 11194-11205.	14.6	53
169	Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries. Materials Today, 2021, 44, 15-24.	14.2	53
170	Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure. Energy Storage Materials, 2020, 24, 291-296.	18.0	51
171	Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations. Journal of Power Sources, 2018, 380, 185-193.	7.8	49
172	Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14741-14748.	8.0	47
173	<i>In-Situ</i> Electrochemical Transmission Electron Microscopy for Battery Research. Microscopy and Microanalysis, 2014, 20, 484-492.	0.4	45
174	Optimized Electrolyte with High Electrochemical Stability and Oxygen Solubility for Lithium–Oxygen and Lithium–Air Batteries. ACS Energy Letters, 2020, 5, 2182-2190.	17.4	45
175	Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries. Journal of Power Sources, 2012, 213, 160-168.	7.8	44
176	Formation of Interfacial Layer and Long-Term Cyclability of Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2014, 6, 14141-14151.	8.0	44
177	Constructing Robust Electrode/Electrolyte Interphases to Enable Wide Temperature Applications of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 21496-21505.	8.0	44
178	Thermodynamics of Antisite Defects in Layered NMC Cathodes: Systematic Insights from High-Precision Powder Diffraction Analyses. Chemistry of Materials, 2020, 32, 1002-1010.	6.7	44
179	Reversible Electrochemical Interface of Mg Metal and Conventional Electrolyte Enabled by Intermediate Adsorption. ACS Energy Letters, 2020, 5, 200-206.	17.4	44
180	Effects of Propylene Carbonate Content in CsPF ₆ -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5715-5722.	8.0	43

#	Article	IF	CITATIONS
181	The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 20687-20695.	8.0	41
182	A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure. Nano Energy, 2019, 59, 110-119.	16.0	39
183	Effects of Fluorinated Diluents in Localized Highâ€Concentration Electrolytes for Lithium–Oxygen Batteries. Advanced Functional Materials, 2021, 31, 2002927.	14.9	39
184	Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process. Advanced Energy Materials, 2018, 8, 1702340.	19.5	38
185	Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling. Chemistry of Materials, 2015, 27, 7447-7451.	6.7	37
186	An Approach to Make Macroporous Metal Sheets as Current Collectors for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A765.	2.9	35
187	Lattice Mn ³⁺ Behaviors in Li ₄ Ti ₅ O ₁₂ /LiNi _{0.5} Mn _{1.5} O ₄ Full Cells. Journal of the Electrochemical Society, 2013, 160, A1264-A1268.	2.9	35
188	Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries. Chemistry of Materials, 2017, 29, 9023-9029.	6.7	35
189	Electrode Edge Effects and the Failure Mechanism of Lithiumâ€Metal Batteries. ChemSusChem, 2018, 11, 3821-3828.	6.8	35
190	Inâ€Situâ€Grown ZnCo ₂ O ₄ on Singleâ€Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 3697-3703.	6.8	34
191	Stability of polymeric separators in lithium metal batteries in a low voltage environment. Journal of Materials Chemistry A, 2018, 6, 5006-5015.	10.3	31
192	Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2525-2530.	17.4	30
193	Highly efficient Ru/B4C multifunctional oxygen electrode for rechargeable Li O2 batteries. Journal of Power Sources, 2019, 413, 11-19.	7.8	28
194	Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li ⁺ interactions and Li ⁺ transport mechanism. Journal of Materials Chemistry A, 2021, 9, 17459-17473.	10.3	28
195	Optimization of Magnesiumâ€Doped Lithium Metal Anode for High Performance Lithium Metal Batteries through Modeling and Experiment. Angewandte Chemie - International Edition, 2021, 60, 16506-16513.	13.8	28
196	A Polymer-in-Salt Electrolyte with Enhanced Oxidative Stability for Lithium Metal Polymer Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31583-31593.	8.0	28
197	Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 37188-37196.	8.0	27
198	A lithium-sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions. Nano Energy, 2020, 76, 105041.	16.0	25

#	Article	IF	CITATIONS
199	Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries. Journal of Power Sources, 2013, 242, 736-741.	7.8	24
200	Controlling Ion Coordination Structure and Diffusion Kinetics for Optimized Electrode-Electrolyte Interphases and High-Performance Si Anodes. Chemistry of Materials, 2020, 32, 8956-8964.	6.7	24
201	Unravelling high-temperature stability of lithium-ion battery with lithium-rich oxide cathode in localized high-concentration electrolyte. Journal of Power Sources Advances, 2020, 5, 100024.	5.1	23
202	In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process. Journal of Power Sources, 2016, 304, 51-59.	7.8	20
203	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	17.4	20
204	Extending the limits of powder diffraction analysis: Diffraction parameter space, occupancy defects, and atomic form factors. Review of Scientific Instruments, 2018, 89, 093002.	1.3	18
205	Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation. ACS Applied Materials & amp; Interfaces, 2018, 10, 21965-21972.	8.0	18
206	Stable Solid Electrolyte Interphase Layer Formed by Electrochemical Pretreatment of Gel Polymer Coating on Li Metal Anode for Lithium–Oxygen Batteries. ACS Energy Letters, 2021, 6, 3321-3331.	17.4	17
207	Sweeping potential regulated structural and chemical evolution of solid-electrolyte interphase on Cu and Li as revealed by cryo-TEM. Nano Energy, 2020, 76, 105040.	16.0	16
208	Lithiumâ€Oxygen Batteries: Stabilization of Li Metal Anode in DMSOâ€Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O ₂ Batteries (Adv. Energy Mater. 14/2017). Advanced Energy Materials, 2017, 7, .	19.5	11
209	Characterization and Modeling of Lithium Dendrite Growth. Springer Series in Materials Science, 2017, , 5-43.	0.6	9
210	Nonsacrificial Additive for Tuning the Cathode–Electrolyte Interphase of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 4111-4118.	8.0	8
211	Highly Stable Oxygen Electrodes Enabled by Catalyst Redistribution through an In Situ Electrochemical Method. Advanced Energy Materials, 2019, 9, 1803598.	19.5	6
212	Understanding the Effect of Additives in Li-ion and Li-Sulfur Batteries by Operando ec- (S)TEM. Microscopy and Microanalysis, 2016, 22, 22-23.	0.4	5
213	Lean Electrolyte Batteries: Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition (Adv. Funct. Mater. 38/2018). Advanced Functional Materials, 2018, 28, 1870275.	14.9	5
214	Optimization of Magnesiumâ€Đoped Lithium Metal Anode for High Performance Lithium Metal Batteries through Modeling and Experiment. Angewandte Chemie, 2021, 133, 16642-16649.	2.0	5
215	The Effect of Solvent on the Capacity Retention in a Germanium Anode for Lithium Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	2.1	4
216	Lithiumâ€Metal Batteries: Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes (Adv. Mater. 21/2018). Advanced Materials, 2018, 30, 1870144.	21.0	4

#	Article	IF	CITATIONS
217	High Coulombic Efficiency of Lithium Plating/Stripping and Lithium Dendrite Prevention. Springer Series in Materials Science, 2017, , 45-152.	0.6	3
218	Cathode Materials: Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transition-Metal Oxide Cathodes (Adv. Energy Mater. 9/2016). Advanced Energy Materials, 2016, 6, .	19.5	2
219	Primary Lithium Air Batteries. , 2014, , 255-289.		2
220	Structural and Chemical Evolution of Li and Mn Rich Layered Oxide Cathode and Correlation with Capacity and Voltage Fading. Microscopy and Microanalysis, 2015, 21, 141-142.	0.4	1
221	Lithium Metal Batteries: Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient Highâ€Concentration Electrolyte Layer (Adv. Energy Mater. 8/2016). Advanced Energy Materials, 2016, 6, .	19.5	1
222	A reliable sealing method for microbatteries. Journal of Power Sources, 2017, 341, 443-447.	7.8	1
223	Imaging Electrochemical Processes in Li Batteries by Operando STEM. Microscopy and Microanalysis, 2017, 23, 1970-1971.	0.4	1
224	Application of Lithium Metal Anodes. Springer Series in Materials Science, 2017, , 153-188.	0.6	1
225	Observation of Solid-Liquid Interfacial Reactions Controlled Bulk Phase Transition of Ni-rich Layered Cathode. Microscopy and Microanalysis, 2018, 24, 1522-1523.	0.4	1
226	Direct Observation of Electrolyte Degradation Mechanisms in Li-Ion Batteries. Microscopy and Microanalysis, 2014, 20, 1624-1625.	0.4	0
227	Charge-Discharge Cycling Induced Structural and Chemical Evolution of Li2MnO3 Cathode for Li-ion Batteries. Microscopy and Microanalysis, 2015, 21, 473-474.	0.4	О
228	AC-STEM Studies of Phase Transformation and Evolution of Li-Rich Layered Cathode Materials Induced by Battery Charge-Discharge Cycling and by Electron-beam Irradiation. Microscopy and Microanalysis, 2015, 21, 137-138.	0.4	0
229	Surface Coating Effect on Si Nanowires Anodes for Lithium Ion Batteries. Microscopy and Microanalysis, 2015, 21, 321-322.	0.4	ο
230	Investigating Side Reactions and Coating Effects on High Voltage Layered Cathodes for Lithium Ion Batteries. Microscopy and Microanalysis, 2016, 22, 1312-1313.	0.4	0
231	Electrolytes for Lithium-Ion and Lithium Metal Batteries. , 2021, , .		О
232	Enabling High-Voltage Lithium Metal Batteries Under Practical Conditions. SSRN Electronic Journal, 0,	0.4	0