Won-Sik Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11217289/publications.pdf

Version: 2024-02-01

361413 454955 1,506 30 20 30 citations h-index g-index papers 30 30 30 2647 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kinetic stabilization of a topotactically transformed texture morphology <i>via</i> doping in Ni-rich lithium layered oxides. Journal of Materials Chemistry A, 2022, 10, 13735-13743.	10.3	3
2	Laser-based three-dimensional manufacturing technologies for rechargeable batteries. Nano Convergence, 2021, 8, 23.	12.1	13
3	Mesoporous Si–Cu nanocomposite anode for a lithium ion battery produced by magnesiothermic reduction and electroless deposition. Nanotechnology, 2019, 30, 405401.	2.6	12
4	Solid solution phosphide (Mn _{1â^'x} Fe _x P) as a tunable conversion/alloying hybrid anode for lithium-ion batteries. Nanoscale, 2019, 11, 13494-13501.	5.6	14
5	Highly stable SnO ₂ â€"Fe ₂ O ₃ â€"C hollow spheres for reversible lithium storage with extremely long cycle life. Nanoscale, 2018, 10, 4370-4376.	5. 6	46
6	A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8013-8020.	10.3	81
7	Sn ₄ P ₃ –C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 17437-17443.	10.3	82
8	TiO2@SnO2@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2365-2371.	2.5	17
9	Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Research, 2016, 9, 2174-2181.	10.4	67
10	Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale, 2014, 6, 4297.	5.6	149
11	Facile synthesis of Si nanoparticles using magnesium silicide reduction and its carbon composite as a high-performance anode for Li ion batteries. Journal of Power Sources, 2014, 252, 144-149.	7.8	44
12	Facile synthesis of Si/TiO2 (anatase) core–shell nanostructured anodes for rechargeable Li-ion batteries. Journal of Electroanalytical Chemistry, 2014, 712, 202-206.	3.8	31
13	Lateral epitaxial growth of faceted SnO ₂ nanowires with self-alignment. CrystEngComm, 2014, 16, 9340-9344.	2.6	8
14	Brookite TiO ₂ Thin Film Epitaxially Grown on (110) YSZ Substrate by Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11817-11822.	8.0	25
15	SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Research, 2014, 7, 1128-1136.	10.4	123
16	SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. Nanoscale, 2013, 5, 8480.	5.6	116
17	Mesoporous Nano‧i Anode for Liâ€ion Batteries Produced by Magnesioâ€Mechanochemical Reduction of Amorphous SiO ₂ . Energy Technology, 2013, 1, 327-331.	3.8	16
18	Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application. Journal of Power Sources, 2013, 225, 108-112.	7.8	110

#	Article	IF	CITATIONS
19	Enhancement of the Cyclability of a Si Anode through Co ₃ O ₄ Coating by the Sol–Gel Method. Journal of Physical Chemistry C, 2013, 117, 7013-7017.	3.1	44
20	Reversible storage of Li-ion in nano-Si/SnO2 core–shell nanostructured electrode. Journal of Materials Chemistry A, 2013, 1, 3733.	10.3	33
21	Hetero-epitaxial growth of vertically-aligned TiO2 nanorods on an m-cut sapphire substrate with an (001) SnO2 buffer layer. CrystEngComm, 2012, 14, 4963.	2.6	3
22	Synthesis of well-aligned SnO2 nanowires with branches on r-cut sapphire substrate. CrystEngComm, 2012, 14, 1545.	2.6	6
23	High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochimica Acta, 2012, 71, 201-205.	5.2	112
24	Fabrication of SnO2nanotube microyarn and its gas sensing behavior. Smart Materials and Structures, 2011, 20, 105019.	3.5	21
25	Fabrication of Ga ₂ O ₃ /SnO ₂ core–shell nanowires and their ethanol gas sensing properties. Journal of Materials Research, 2011, 26, 2322-2327.	2.6	36
26	Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method. Journal of Nanoparticle Research, 2010, 12, 1889-1896.	1.9	114
27	Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sensors and Actuators B: Chemical, 2010, 147, 653-659.	7.8	45
28	SnO ₂ nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology, 2010, 21, 245605.	2.6	90
29	Epitaxial Directional Growth of Tin Oxide (101) Nanowires on Titania (101) Substrate. Crystal Growth and Design, 2010, 10, 4746-4751.	3.0	16
30	CO gas sensing properties in Pd-added ZnO sensors. Journal of Electroceramics, 2009, 23, 196-199.	2.0	29