Laurent Brilland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11216775/publications.pdf

Version: 2024-02-01

414414 304743 1,548 49 22 32 h-index citations g-index papers 49 49 49 986 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 2015, 23, 3282.	3.4	193
2	Fabrication of complex structures of Holey Fibers in Chalcogenide glass. Optics Express, 2006, 14, 1280.	3.4	181
3	Thulium pumped mid-infrared 09–9Î⅓m supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Optics Express, 2014, 22, 3959.	3.4	126
4	Casting method for producing low-loss chalcogenide microstructured optical fibers. Optics Express, 2010, 18, 9107.	3.4	125
5	Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Optics Express, 2017, 25, 15336.	3.4	86
6	Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers. Journal of Lightwave Technology, 2009, 27, 1707-1715.	4.6	70
7	Small-core chalcogenide microstructured fibers for the infrared. Applied Optics, 2008, 47, 6014.	2.1	58
8	2–10µm Midâ€Infrared Fiberâ€Based Supercontinuum Laser Source: Experiment and Simulation. Laser and Photonics Reviews, 2020, 14, 2000011.	8.7	56
9	Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses. Optical Materials Express, 2012, 2, 1359.	3.0	54
10	Chalcogenide glass hollow core photonic crystal fibers. Optical Materials, 2010, 32, 1532-1539.	3.6	51
11	All-solid all-chalcogenide microstructured optical fiber. Optics Express, 2013, 21, 14643.	3.4	46
12	Interfaces impact on the transmission of chalcogenides photonic crystal fibres. Journal of the Ceramic Society of Japan, 2008, 116, 1024-1027.	1.1	45
13	Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As_38Se_62 fiber. Optics Express, 2011, 19, B653.	3.4	40
14	Highly birefringent chalcogenide optical fiber for polarization-maintaining in the 3-85 µm mid-IR window. Optics Express, 2016, 24, 7977.	3.4	40
15	Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform. Optical Materials Express, 2021, 11, 198.	3.0	37
16	Relative intensity noise and frequency noise of a compact Brillouin laser made of As_38Se_62 suspended-core chalcogenide fiber. Optics Letters, 2012, 37, 1157.	3.3	33
17	Optical Aging of Chalcogenide Microstructured Optical Fibers. Journal of Lightwave Technology, 2014, 32, 2428-2432.	4.6	32
18	Te-As-Se glass microstructured optical fiber for the middle infrared. Applied Optics, 2009, 48, 3860.	2.1	30

#	Article	IF	Citations
19	Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing. Journal of Non-Crystalline Solids, 2013, 377, 217-219.	3.1	29
20	Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers. Optica, 2017, 4, 643.	9.3	28
21	Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers. Materials, 2014, 7, 6120-6129.	2.9	26
22	Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber. IEEE Photonics Technology Letters, 2010, 22, 1844-1846.	2.5	22
23	Purification of Ge-As-Se ternary glasses for the development of high quality microstructured optical fibers. Journal of Non-Crystalline Solids, 2019, 503-504, 84-88.	3.1	22
24	Linewidth-narrowing and intensity noise reduction of the 2nd order Stokes component of a low threshold Brillouin laser made of Ge_10As_22Se_68 chalcogenide fiber. Optics Express, 2012, 20, B104.	3.4	20
25	Toward More Coherent Sources Using a Microstructured Chalcogenide Brillouin Fiber Laser. IEEE Photonics Technology Letters, 2013, 25, 238-241.	2.5	19
26	Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation. Optics Letters, 2019, 44, 5505.	3.3	15
27	Investigation on Chalcogenide Glass Additive Manufacturing for Shaping Mid-infrared Optical Components and Microstructured Optical Fibers. Crystals, 2021, 11, 228.	2.2	12
28	Wavelength conversion in a highly nonlinear chalcogenide microstructured fiber. Optics Letters, 2012, 37, 4576.	3.3	11
29	Fabrication of low losses chalcogenide photonic crystal fibers by molding process. Proceedings of SPIE, 2010, , .	0.8	10
30	Chalcogenide microstructured optical fibres for mid-IR applications. Comptes Rendus Physique, 2017, 18, 19-23.	0.9	8
31	Original designs of chalcogenide microstuctured optical fibers. International Journal of Higher Education Management, 2017, 3, 7-13.	1.3	6
32	Recent advances in very highly nonlinear chalcogenide photonic crystal fibers and their applications. , 2010, , .		3
33	Recent advances in very highly nonlinear chalcogenide photonic crystal fibers and their applications. , 2012 , , .		3
34	Exposed-core chalcogenide microstructured optical fibers for chemical sensing. , 2013, , .		2
35	Mid-Infrared Supercontinuum Generation From Cascaded Soft-Glass Fibers. , 2016, , .		2
36	Chalcogenide microstructured optical fibers for chemical sensing. , 2014, , .		1

#	Article	IF	Citations
37	Development of optical fibers for mid-infrared sensing: state of the art and recent achievements. Proceedings of SPIE, 2015, , .	0.8	1
38	Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers., 2015,,.		1
39	Mid infrared supercontinuum generation from chalcogenide glass waveguides and fibers. , 2015, , .		1
40	Generation of broadband mid-infrared supercontinuum radiation in cascaded soft-glass fibers. , 2016, , .		1
41	Frequency Agnostic RF-Photonic Limiter with GeAsSe Tapered Fiber Brillouin Laser. , 2018, , .		1
42	Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers. , 2017, , .		1
43	Nonlinear effects above 2 & amp; $\#$ x00B5; $\#$ in chalcogenide suspended core microstructured optical fibers: Modeling and experiments. , 2011, , .		O
44	Linear and nonlinear optical properties of chalcogenide microstructured optical fibers. Proceedings of SPIE, $2015, , .$	0.8	0
45	Original designs of chalcogenide microstructured optical fibers for mid-IR applications. , 2016, , .		O
46	Chalcogenide Microstructured Optical Fibers for IR Photonics. , 2011, , .		0
47	All-solid chalcogenide microstructured optical fibers with photonic band gap propagation. , 2014, , .		0
48	Microstructured chalcogenide glass fibers. , 2015, , .		0
49	Fabrication of high optical quality Ge-As-Se glasses for the development of low-loss microstructured optical fibers. , 2019, , .		О