Kasey Vickers, Kasey C Vickers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11214932/publications.pdf Version: 2024-02-01

KASEY VICKERS, KASEY C

#	Article	IF	CITATIONS
1	MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 2011, 13, 423-433.	10.3	2,395
2	HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nature Communications, 2014, 5, 3292.	12.8	343
3	Intercellular Transport of MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 186-192.	2.4	336
4	Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology, 2012, 23, 91-97.	2.7	272
5	Transfer of Functional Cargo in Exomeres. Cell Reports, 2019, 27, 940-954.e6.	6.4	255
6	MicroRNA-223 coordinates cholesterol homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14518-14523.	7.1	216
7	MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology, 2013, 57, 533-542.	7.3	196
8	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	28.9	152
9	MicroRNA-29 Fine-tunes the Expression of Key FOXA2-Activated Lipid Metabolism Genes and Is Dysregulated in Animal Models of Insulin Resistance and Diabetes. Diabetes, 2014, 63, 3141-3148.	0.6	105
10	The long noncoding RNA CHROME regulates cholesterol homeostasis in primates. Nature Metabolism, 2019, 1, 98-110.	11.9	104
11	Lipoprotein carriers of microRNAs. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2069-2074.	2.4	103
12	microRNAs in the onset and development of cardiovascular disease. Clinical Science, 2014, 126, 183-194.	4.3	94
13	HDL and cholesterol: life after the divorce?. Journal of Lipid Research, 2014, 55, 4-12.	4.2	72
14	MicroRNAs in atherosclerosis and lipoprotein metabolism. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 150-155.	2.3	68
15	Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Scientific Reports, 2015, 5, 12911.	3.3	66
16	Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. Journal of Extracellular Vesicles, 2018, 7, 1506198.	12.2	60
17	Dual inhibition of endothelial miR-92a-3p and miR-489-3p reduces renal injury-associated atherosclerosis. Atherosclerosis, 2019, 282, 121-131.	0.8	55
18	Utility of Select Plasma MicroRNA for Disease and Cardiovascular Risk Assessment in Patients with Rheumatoid Arthritis. Journal of Rheumatology, 2015, 42, 1746-1751.	2.0	48

KASEY VICKERS, KASEY C

#	Article	IF	CITATIONS
19	Complexity of microRNA function and the role of isomiRs in lipid homeostasis. Journal of Lipid Research, 2013, 54, 1182-1191.	4.2	46
20	Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight, 2018, 3, .	5.0	41
21	Transcriptomic Analysis of Chronic Hepatitis B and C and Liver Cancer Reveals MicroRNA-Mediated Control of Cholesterol Synthesis Programs. MBio, 2015, 6, e01500-15.	4.1	39
22	Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein. Journal of Lipid Research, 2015, 56, 972-985.	4.2	39
23	Beta cell secretion of miR-375 to HDL is inversely associated with insulin secretion. Scientific Reports, 2019, 9, 3803.	3.3	35
24	Development and Validation of a MicroRNA Panel to Differentiate Between Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus and Controls. Journal of Rheumatology, 2020, 47, 188-196.	2.0	33
25	HDL and microRNA therapeutics in cardiovascular disease. , 2016, 168, 43-52.		31
26	Isolation of High-density Lipoproteins for Non-coding Small RNA Quantification. Journal of Visualized Experiments, 2016, , .	0.3	28
27	HDL-small RNA Export, Transport, and Functional Delivery in Atherosclerosis. Current Atherosclerosis Reports, 2021, 23, 38.	4.8	27
28	Plasma miRNAs improve the prediction of coronary atherosclerosis in patients with rheumatoid arthritis. Clinical Rheumatology, 2021, 40, 2211-2219.	2.2	24
29	High-density lipoproteins induce miR-223–3p biogenesis and export from myeloid cells: Role of scavenger receptor BI-mediated lipid transfer. Atherosclerosis, 2019, 286, 20-29.	0.8	22
30	Integrative roles of microRNAs in lipid metabolism and dyslipidemia. Current Opinion in Lipidology, 2019, 30, 165-171.	2.7	18
31	Small RNA Overcomes the Challenges of Therapeutic Targeting of Microsomal Triglyceride Transfer Protein. Circulation Research, 2013, 113, 1189-1191.	4.5	17
32	MiR-29 Regulates de novo Lipogenesis in the Liver and Circulating Triglyceride Levels in a Sirt1-Dependent Manner. Frontiers in Physiology, 2019, 10, 1367.	2.8	12
33	High-Density Lipoproteins in Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 8201.	4.1	9
34	Nuclear Receptors and microRNA-144 Coordinately Regulate Cholesterol Efflux. Circulation Research, 2013, 112, 1529-1531.	4.5	8
35	Human Scavenger Receptor Class B Type I Variants, Lipid Traits, and Cardiovascular Disease. Circulation: Cardiovascular Genetics, 2014, 7, 735-737.	5.1	5
36	Elucidation of physico-chemical principles of high-density lipoprotein–small RNA binding interactions. Journal of Biological Chemistry, 2022, 298, 101952.	3.4	4

#	Article	IF	CITATIONS
37	Pervasive Small RNAs in Cardiometabolic Research: Great Potential Accompanied by Biological and Technical Barriers. Diabetes, 2020, 69, 813-822.	0.6	3
38	The Role of Noncoding "Junk DNA―in Cardiovascular Disease. Clinical Chemistry, 2010, 56, 1518-1520.	3.2	2
39	Modern Transcriptomics and Small RNA Diversity. , 2016, , 39-57.		1