Stéphane Guillot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11212851/publications.pdf

Version: 2024-02-01

101 papers 6,883

57758 44 h-index 81 g-index

104 all docs

104 docs citations

104 times ranked 4261 citing authors

#	Article	IF	Citations
1	Receiver function mapping of the mantle transition zone beneath the Western Alps: New constraints on slab subduction and mantle upwelling. Earth and Planetary Science Letters, 2022, 577, 117267.	4.4	6
2	Change in Subduction Dip Angle of the Indian Continental Lithosphere Inferred From the Western Himalayan Eclogites. Frontiers in Earth Science, 2022, 9, .	1.8	7
3	HT overprint of HP granulites in the Oisans–Pelvoux massif: Implications for the dynamics of the Variscan collision in the external western Alps. Lithos, 2022, 416-417, 106650.	1.4	5
4	Observation of rapid long-range seismic bursts in the Japan Trench subduction leading to the nucleation of the Tohoku earthquake. Earth and Planetary Science Letters, 2022, 594, 117696.	4.4	7
5	Carboniferous highâ€∢i>P metamorphism and deformation in the Belledonne Massif (Western Alps). Journal of Metamorphic Geology, 2021, 39, 1009-1044.	3.4	12
6	Serpentinization of New Caledonia peridotites: from depth to (sub-)surface. Contributions To Mineralogy and Petrology, 2020, 175 , 1 .	3.1	17
7	Evidence for a serpentinized plate interface favouring continental subduction. Nature Communications, 2020, 11, 2171.	12.8	32
8	Tectono-metamorphic evolution of an evaporitic décollement as recorded by mineral and fluid geochemistry: The "Nappe des Gypses―(Western Alps) case study. Lithos, 2020, 358-359, 105419.	1.4	5
9	Carbonated Inheritance in the Eastern Tibetan Lithospheric Mantle: Petrological Evidences and Geodynamic Implications. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008495.	2.5	9
10	3-D Pn tomography reveals continental subduction at the boundaries of the Adriatic microplate in the absence of a precursor oceanic slab. Earth and Planetary Science Letters, 2019, 510, 131-141.	4.4	21
11	Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Science of the Total Environment, 2019, 683, 793-807.	8.0	60
12	Transition from subduction to collision recorded in the Pan-African arc complexes (Mali to Ghana). Precambrian Research, 2019, 320, 261-280.	2.7	22
13	Permian charnockites in the Pobeda area: Implications for Tarim mantle plume activity and HT metamorphism in the South Tien Shan range. Lithos, 2018, 304-307, 135-154.	1.4	14
14	Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography. Tectonophysics, 2018, 731-732, 35-47.	2.2	32
15	Mantle wedge serpentinites: A transient reservoir of halogens, boron, and nitrogen for the deeper mantle. Geology, 2018, 46, 883-886.	4.4	24
16	Tectonometamorphic evolution of the Atbashi highâ€∢i>P units (Kyrgyz <scp>CAOB</scp> , Tien Shan): Implications for the closure of the Turkestan Ocean and continental subduction–exhumation of the South Kazakh continental margin. Journal of Metamorphic Geology, 2018, 36, 959-985.	3.4	20
17	Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps). Lithos, 2018, 296-299, 623-636.	1.4	36

New structural data on Late Paleozoic tectonics in the Kyrgyz Tien Shan (Central Asian Orogenic) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 c

#	Article	IF	CITATIONS
19	Microstructural vs compositional preservation and pseudomorphic replacement of muscovite in deformed metapelites from the Longmen Shan (Sichuan, China). Lithos, 2017, 282-283, 262-280.	1.4	39
20	Total exhumation across the Beichuan fault in the Longmen Shan (eastern Tibetan plateau, China): Constraints from petrology and thermobarometry. Journal of Asian Earth Sciences, 2017, 140, 108-121.	2.3	28
21	Earthquakes in the western Alpine mantle wedge. Gondwana Research, 2017, 44, 89-95.	6.0	25
22	Protolith of the Stak eclogite in the northwestern Himalaya. Italian Journal of Geosciences, 2017, 136, 64-72.	0.8	8
23	Continuity of the Alpine slab unraveled by highâ ∈r esolution <i>P</i> wave tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 8720-8737.	3.4	95
24	Eocene to Oligocene retrogression and recrystallization of the Stak eclogite in northwest Himalaya. Lithos, 2016, 240-243, 155-166.	1.4	21
25	Late Paleozoic evolution of the South Tien Shan: Insights from P–T estimates and allanite geochronology on retrogressed eclogites (Chatkal range, Kyrgyzstan). Journal of Geodynamics, 2016, 96, 62-80.	1.6	58
26	Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth and Planetary Science Letters, 2015, 432, 363-373.	4.4	68
27	Tectonic significance of serpentinites. Tectonophysics, 2015, 646, 1-19.	2.2	174
28	Quantifying the Eocene to Pleistocene topographic evolution of the southwestern Alps, France and Italy. Earth and Planetary Science Letters, 2015, 412, 220-234.	4.4	34
29	Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks. Earth and Planetary Science Letters, 2015, 411, 229-240.	4.4	39
30	Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal). Environmental Earth Sciences, 2015, 74, 2571-2593.	2.7	24
31	First seismic evidence for continental subduction beneath the Western Alps. Geology, 2015, 43, 815-818.	4.4	103
32	Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	38
33	The coupling of Indian subduction and Asian continental tectonics. Gondwana Research, 2014, 26, 608-626.	6.0	96
34	<i>Pâ€"Tâ€"t</i> estimation of deformation in lowâ€grade quartzâ€feldsparâ€bearing rocks using thermodynamic modelling and ⁴⁰ Ar/ ³⁹ Ar dating techniques: example of the Planâ€deâ€Phasy shear zone unit (Briançonnais Zone, Western Alps). Terra Nova, 2014, 26, 130-138.	2.1	43
35	Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic. Tectonics, 2014, 33, 1989-2012.	2.8	18
36	Importance of continental subductions for the growth of the Tibetan plateau. Bulletin - Societie Geologique De France, 2013, 184, 199-223.	2.2	45

#	Article	IF	Citations
37	Geochemistry of subduction zone serpentinites: A review. Lithos, 2013, 178, 96-127.	1.4	514
38	High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps. Chemical Geology, 2013, 343, 38-54.	3.3	83
39	Amount of Asian lithospheric mantle subducted during the India/Asia collision. Gondwana Research, 2013, 24, 936-945.	6.0	77
40	Short-lived, fast erosional exhumation of the internal western Alps during the late early Oligocene: Constraints from geothermochronology of pro- and retro-side foreland basin sediments. Lithosphere, 2013, 5, 211-225.	1.4	35
41	Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 2013, 178, 197-210.	1.4	238
42	Syn-tectonic, meteoric water–derived carbonation of the New Caledonia peridotite nappe. Geology, 2013, 41, 1063-1066.	4.4	41
43	Passive obduction and gravity-driven emplacement of large ophiolitic sheets: The New Caledonia ophiolite (SW Pacific) as a case study?. Bulletin - Societie Geologique De France, 2013, 184, 545-556.	2.2	37
44	Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: Application to the Stak eclogitic massif (northwest Himalaya). Geology, 2013, 41, 111-114.	4.4	89
45	Tracing the Oligocene-Miocene Evolution of the Western Alps Drainage Divide with Pebble Petrology, Geochemistry, and Raman Spectroscopy of Foreland Basin Deposits. Journal of Geology, 2012, 120, 603-624.	1.4	14
46	Diachronous evolution of the alpine continental subduction wedge: Evidence from P–T estimates in the Briançonnais Zone houillÔre (France – Western Alps). Journal of Geodynamics, 2012, 56-57, 39-54.	1.6	85
47	Tectono-metamorphic evolution of the Briançonnais zone (Modane-Aussois and Southern Vanoise) Tj ETQq1 1	0.784314 1.6	rgBT Overlo
48	Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology, 2012, 312-313, 93-117.	3.3	94
49	Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France). Swiss Journal of Geosciences, 2012, 105, 39-48.	1.2	11
50	Serpentinites act as sponges for fluidâ€mobile elements in abyssal and subduction zone environments. Terra Nova, 2011, 23, 171-178.	2.1	125
51	Provenance of Cenozoic sedimentary rocks from the Sulaiman fold and thrust belt, Pakistan: implications for the palaeogeography of the Indus drainage system. Journal of the Geological Society, 2011, 168, 499-516.	2.1	33
52	The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation. Contributions To Mineralogy and Petrology, 2010, 159, 781-790.	3.1	41
53	Corundum-bearing garnet peridotite from northern Dominican Republic: A metamorphic product of an arc cumulate in the Caribbean subduction zone. Lithos, 2010, 114, 437-450.	1.4	42
54	Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite. Lithos, 2010, 115, 223-236.	1.4	118

#	Article	IF	Citations
55	Reply to Comment on "Corundum-bearing garnet peridotites from northern Dominican Republic: A metamorphic product of an arc cumulate in the Caribbean subduction zone" by Richard N. Abbott and Grenville Draper. Lithos, 2010, 117, 327-330.	1.4	10
56	Indian continental subduction and slab break-off during Tertiary collision. Terra Nova, 2010, 22, no-no.	2.1	45
57	Crustal mass budget and recycling during the India/Asia collision. Tectonophysics, 2010, 492, 99-107.	2.2	32
58	In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 2010, 269, 262-277.	3.3	152
59	Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophysics, 2010, 483, 125-134.	2.2	141
60	Late tectonic and metamorphic evolution of the Piedmont accretionary wedge (Queyras Schistes) Tj ETQq0 0 0 0 Society of America, 2009, 121, 502-518.	rgBT /Over 3.3	lock 10 Tf 50 36
61	Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2009, 2, 364-368.	12.9	98
62	Paleozoic evolution of the External Crystalline Massifs of the Western Alps. Comptes Rendus - Geoscience, 2009, 341, 253-265.	1.2	73
63	Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. Frontiers in Earth Sciences, 2009, , 175-205.	0.1	170
64	New Uâ€Th/Pb constraints on timing of shearing and longâ€ŧerm slipâ€ŧate on the Karakorum fault. Tectonics, 2008, 27, .	2.8	98
65	SHRIMP zircon ages of eclogites in the Stak massif, northern Pakistan. Himalayan Journal of Sciences, 2008, 5, 119-120.	0.3	7
66	Occurrences of sulphide minerals in the Stak and Tso Morari eclogites: Implications for the behaviour of sulphur and chalcophile elements in subduction zones. Himalayan Journal of Sciences, 2008, 5, 118.	0.3	1
67	Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1785-1794.	1.7	70
68	Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth and Planetary Science Letters, 2007, 259, 212-225.	4.4	191
69	Initial geometry of western Himalaya and ultrahigh-pressure metamorphic evolution. Journal of Asian Earth Sciences, 2007, 30, 557-564.	2.3	39
70	Twenty million years of continuous deformation along the Karakorum fault, western Tibet: A thermochronological analysis. Tectonics, 2007, 26, .	2.8	83
71	Geochemical character of serpentinites associated with high―to ultrahighâ€pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	179
72	Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles. Geophysical Research Letters, 2007, 34, .	4.0	87

#	Article	IF	CITATIONS
73	Serpentinites in an Alpine convergent setting: Effects of metamorphic grade and deformation on microstructures. European Journal of Mineralogy, 2006, 18, 21-33.	1.3	60
74	Relicts of an intra-oceanic arc in the Sapi-Shergol mélange zone (Ladakh, NW Himalaya, India): implications for the closure of the Neo-Tethys Ocean. Journal of Asian Earth Sciences, 2006, 26, 695-707.	2.3	62
75	Evidence for pre-Cretaceous history and partial Neogene (19–9Ma) reequilibration in the Karakorum (NW Himalayan Syntaxis) from 40Ar–39Ar amphibole dating. Journal of Asian Earth Sciences, 2006, 27, 371-391.	2.3	17
76	Himalayan ultrahigh pressure rocks and warped Indian subduction plane. Himalayan Journal of Sciences, 2006, 2, 148-149.	0.3	5
77	Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2005, 69, 5585-5596.	3.9	97
78	Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): A case study. Tectonics, 2004, 23, n/a-n/a.	2.8	121
79	The South Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys. Chemical Geology, 2004, 203, 273-303.	3.3	139
80	Reply to Comment on "Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibetˮ. Earth and Planetary Science Letters, 2004, 229, 159-163.	4.4	17
81	Source and tectono-metamorphic evolution of mafic and pelitic metasedimentary rocks from the central Quetico metasedimentary belt, Archean Superior Province of Canada. Precambrian Research, 2004, 132, 155-177.	2.7	22
82	Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth and Planetary Science Letters, 2004, 219, 255-269.	4.4	181
83	Reconstructing the total shortening history of the NW Himalaya. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	227
84	Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 2003, 31, 525.	4.4	212
85	Late Paleozoic polyphased tectonics in the SW Belledonne massif (external crystalline massifs, French) Tj ETQq1 I	1 0.784314 2.2	4 rgBT /Oven
86	Late Paleozoic polyphased tectonics in the SW Belledonne massif (external crystalline massifs, French) Tj ETQq0 ()	verlock 10 T
87	Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and Planetary Science Letters, 2001, 193, 115-127.	4.4	190
88	Thrusting and sinistral wrenching in a pre-Eocene HP-LT Caribbean accretionary wedge (Samaná) Tj ETQq0 0 0 rg	;B <u>T /</u> Overlc	ock 10 Tf 50
89	Diversité du métamorphisme éclogitique dans le massif ophiolitique du Monviso (Alpes occidentales,) Tj ET	「Qq1 1 0.7	/84314 rg <mark>8T</mark>
90	Extension syn-convergence, poinçonnement vertical et unités métamorphiques contrastées en bordure ouest du Grand Paradis (Alpes Franco-Italiennes). Geodinamica Acta, 2000, 13, 133-148.	2.2	26

#	Article	IF	Citations
91	Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 2000, 28, 487.	4.4	309
92	Extension syn-convergence, poinçonnement vertical et unités métamorphiques contrastées en bordure ouest du Grand Paradis (Alpes Franco-Italiennes)Syn-convergence extension, vertical pinching and contrasted metamorphic units on the western edge of the Gran Paradiso massif (French-Italian Alps) Geodinamica Acta, 2000, 13, 133-148.	2.2	38
93	Mantle wedge serpentinization and exhumation of eclogites: Insights from eastern Ladakh, northwest Himalaya. Geology, 2000, 28, 199.	4.4	148
94	Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50 6
95	Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External) Tj ETQq1 1 0.78	34314 rgB 2 . 2	T /Qyerlock 1
96	An overview of the metamorphic evolution in Central Nepal. Journal of Asian Earth Sciences, 1999, 17, 713-725.	2.3	60
97	HP metamorphic belt along the Indus suture zone of NW Himalaya: new discoveries and significance. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des Planètes =, 1997, 325, 773-778.	0.2	8
98	Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). European Journal of Mineralogy, 1997, 9, 1073-1084.	1.3	119
99	Contact metamorphism and depth of emplacement of the Manaslu granite (central Nepal). Implications for Himalayan orogenesis. Tectonophysics, 1995, 241, 99-119.	2.2	61
100	New constraints on the age of the Manaslu leucogranite: Evidence for episodic tectonic denudation in the central Himalayas. Geology, 1994, 22, 559.	4.4	104
101	Fe–Ni-rich Silicate Aggregates Formed after Sulfides in High-pressure Serpentinites. Journal of Petrology, 0, , .	2.8	1