
Stéphane Guillot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11212851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochemistry of subduction zone serpentinites: A review. Lithos, 2013, 178, 96-127.	1.4	514
2	Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 2000, 28, 487.	4.4	309
3	Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 2013, 178, 197-210.	1.4	238
4	Reconstructing the total shortening history of the NW Himalaya. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	227
5	Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 2003, 31, 525.	4.4	212
6	Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth and Planetary Science Letters, 2007, 259, 212-225.	4.4	191
7	Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and Planetary Science Letters, 2001, 193, 115-127.	4.4	190
8	Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth and Planetary Science Letters, 2004, 219, 255-269.	4.4	181
9	Geochemical character of serpentinites associated with high―to ultrahighâ€pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	179
10	Tectonic significance of serpentinites. Tectonophysics, 2015, 646, 1-19.	2.2	174
11	Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. Frontiers in Earth Sciences, 2009, , 175-205.	0.1	170
12	In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 2010, 269, 262-277.	3.3	152
13	Mantle wedge serpentinization and exhumation of eclogites: Insights from eastern Ladakh, northwest Himalaya. Geology, 2000, 28, 199.	4.4	148
14	Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophysics, 2010, 483, 125-134.	2.2	141
15	The South Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys. Chemical Geology, 2004, 203, 273-303.	3.3	139
16	Serpentinites act as sponges for fluidâ€mobile elements in abyssal and subduction zone environments. Terra Nova, 2011, 23, 171-178.	2.1	125
17	Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): A case study. Tectonics, 2004, 23, n/a-n/a.	2.8	121
18	Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). European	1.3	119

Journal of Mineralogy, 1997, 9, 1073-1084.

STéPHANE GUILLOT

#	Article	IF	CITATIONS
19	Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite. Lithos, 2010, 115, 223-236.	1.4	118
20	New constraints on the age of the Manaslu leucogranite: Evidence for episodic tectonic denudation in the central Himalayas. Geology, 1994, 22, 559.	4.4	104
21	First seismic evidence for continental subduction beneath the Western Alps. Geology, 2015, 43, 815-818.	4.4	103
22	New Uâ€Th/Pb constraints on timing of shearing and longâ€ŧerm slipâ€ŧate on the Karakorum fault. Tectonics, 2008, 27, .	2.8	98
23	Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2009, 2, 364-368.	12.9	98
24	Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2005, 69, 5585-5596.	3.9	97
25	The coupling of Indian subduction and Asian continental tectonics. Gondwana Research, 2014, 26, 608-626.	6.0	96
26	Continuity of the Alpine slab unraveled by highâ€resolution <i>P</i> wave tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 8720-8737.	3.4	95
27	Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology, 2012, 312-313, 93-117.	3.3	94
28	Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: Application to the Stak eclogitic massif (northwest Himalaya). Geology, 2013, 41, 111-114.	4.4	89
29	Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles. Geophysical Research Letters, 2007, 34, .	4.0	87
30	Diachronous evolution of the alpine continental subduction wedge: Evidence from P–T estimates in the Briançonnais Zone houillère (France – Western Alps). Journal of Geodynamics, 2012, 56-57, 39-54.	1.6	85
31	Twenty million years of continuous deformation along the Karakorum fault, western Tibet: A thermochronological analysis. Tectonics, 2007, 26, .	2.8	83
32	High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps. Chemical Geology, 2013, 343, 38-54.	3.3	83
33	Amount of Asian lithospheric mantle subducted during the India/Asia collision. Gondwana Research, 2013, 24, 936-945.	6.0	77
34	Paleozoic evolution of the External Crystalline Massifs of the Western Alps. Comptes Rendus - Geoscience, 2009, 341, 253-265.	1.2	73
35	Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1785-1794.	1.7	70
36	Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth and Planetary Science Letters, 2015, 432, 363-373.	4.4	68

#	Article	IF	CITATIONS
37	Relicts of an intra-oceanic arc in the Sapi-Shergol mélange zone (Ladakh, NW Himalaya, India): implications for the closure of the Neo-Tethys Ocean. Journal of Asian Earth Sciences, 2006, 26, 695-707.	2.3	62
38	Contact metamorphism and depth of emplacement of the Manaslu granite (central Nepal). Implications for Himalayan orogenesis. Tectonophysics, 1995, 241, 99-119.	2.2	61
39	An overview of the metamorphic evolution in Central Nepal. Journal of Asian Earth Sciences, 1999, 17, 713-725.	2.3	60
40	Serpentinites in an Alpine convergent setting: Effects of metamorphic grade and deformation on microstructures. European Journal of Mineralogy, 2006, 18, 21-33.	1.3	60
41	Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Science of the Total Environment, 2019, 683, 793-807.	8.0	60
42	Late Paleozoic evolution of the South Tien Shan: Insights from P–T estimates and allanite geochronology on retrogressed eclogites (Chatkal range, Kyrgyzstan). Journal of Geodynamics, 2016, 96, 62-80.	1.6	58
43	Diversité du métamorphisme éclogitique dans le massif ophiolitique du Monviso (Alpes occidentales,)	Tj ETQq1 1 C	.784314 rg 45
44	Indian continental subduction and slab break-off during Tertiary collision. Terra Nova, 2010, 22, no-no.	2.1	45
45	Importance of continental subductions for the growth of the Tibetan plateau. Bulletin - Societie Geologique De France, 2013, 184, 199-223.	2.2	45
46	<i>P–T–t</i> estimation of deformation in lowâ€grade quartzâ€feldsparâ€bearing rocks using thermodynamic modelling and ⁴⁰ Ar/ ³⁹ Ar dating techniques: example of the Planâ€deâ€Phasy shear zone unit (Briançonnais Zone, Western Alps). Terra Nova, 2014, 26, 130-138.	2.1	43
47	Corundum-bearing garnet peridotite from northern Dominican Republic: A metamorphic product of an arc cumulate in the Caribbean subduction zone. Lithos, 2010, 114, 437-450.	1.4	42
48	The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation. Contributions To Mineralogy and Petrology, 2010, 159, 781-790.	3.1	41
49	Syn-tectonic, meteoric water–derived carbonation of the New Caledonia peridotite nappe. Geology, 2013, 41, 1063-1066.	4.4	41
50	Initial geometry of western Himalaya and ultrahigh-pressure metamorphic evolution. Journal of Asian Earth Sciences, 2007, 30, 557-564.	2.3	39
51	Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks. Earth and Planetary Science Letters, 2015, 411, 229-240.	4.4	39
52	Microstructural vs compositional preservation and pseudomorphic replacement of muscovite in deformed metapelites from the Longmen Shan (Sichuan, China). Lithos, 2017, 282-283, 262-280.	1.4	39
53	Extension syn-convergence, poinçonnement vertical et unités métamorphiques contrastées en bordure ouest du Grand Paradis (Alpes Franco-Italiennes)Syn-convergence extension, vertical pinching and contrasted metamorphic units on the western edge of the Gran Paradiso massif (French-Italian Alps) Geodinamica Acta. 2000. 13. 133-148.	2.2	38
54	Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	38

STéPHANE GUILLOT

#	Article	IF	CITATIONS
55	Passive obduction and gravity-driven emplacement of large ophiolitic sheets: The New Caledonia ophiolite (SW Pacific) as a case study?. Bulletin - Societie Geologique De France, 2013, 184, 545-556.	2.2	37
56	Late tectonic and metamorphic evolution of the Piedmont accretionary wedge (Queyras Schistes) Tj ETQq0 0 0 Society of America, 2009, 121, 502-518.) rgBT /Ovei 3.3	rlock 10 Tf 50 36
57	Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps). Lithos, 2018, 296-299, 623-636.	1.4	36
58	Short-lived, fast erosional exhumation of the internal western Alps during the late early Oligocene: Constraints from geothermochronology of pro- and retro-side foreland basin sediments. Lithosphere, 2013, 5, 211-225.	1.4	35
59	Quantifying the Eocene to Pleistocene topographic evolution of the southwestern Alps, France and Italy. Earth and Planetary Science Letters, 2015, 412, 220-234.	4.4	34
60	Provenance of Cenozoic sedimentary rocks from the Sulaiman fold and thrust belt, Pakistan: implications for the palaeogeography of the Indus drainage system. Journal of the Geological Society, 2011, 168, 499-516.	2.1	33
61	Crustal mass budget and recycling during the India/Asia collision. Tectonophysics, 2010, 492, 99-107.	2.2	32
62	Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography. Tectonophysics, 2018, 731-732, 35-47.	2.2	32
63	Evidence for a serpentinized plate interface favouring continental subduction. Nature Communications, 2020, 11, 2171.	12.8	32
64	Total exhumation across the Beichuan fault in the Longmen Shan (eastern Tibetan plateau, China): Constraints from petrology and thermobarometry. Journal of Asian Earth Sciences, 2017, 140, 108-121.	2.3	28
65	Thrusting and sinistral wrenching in a pre-Eocene HP-LT Caribbean accretionary wedge (Saman $ ilde{A}_i$) Tj ETQq $1\ 1\ 0$.7843]4 rg 2.2	BT /Overlock
66	Extension syn-convergence, poinçonnement vertical et unités métamorphiques contrastées en bordure ouest du Grand Paradis (Alpes Franco-Italiennes). Geodinamica Acta, 2000, 13, 133-148.	2.2	26
67	Earthquakes in the western Alpine mantle wedge. Gondwana Research, 2017, 44, 89-95.	6.0	25
68	Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal). Environmental Earth Sciences, 2015, 74, 2571-2593.	2.7	24
69	New structural data on Late Paleozoic tectonics in the Kyrgyz Tien Shan (Central Asian Orogenic) Tj ETQq $1\ 1\ 0.$	784314 rg 6.0	BT /Qverlock
70	Mantle wedge serpentinites: A transient reservoir of halogens, boron, and nitrogen for the deeper mantle. Geology, 2018, 46, 883-886.	4.4	24
71	Source and tectono-metamorphic evolution of mafic and pelitic metasedimentary rocks from the central Quetico metasedimentary belt, Archean Superior Province of Canada. Precambrian Research, 2004, 132, 155-177.	2.7	22
72	Transition from subduction to collision recorded in the Pan-African arc complexes (Mali to Ghana). Precambrian Research, 2019, 320, 261-280.	2.7	22

#	Article	IF	CITATIONS
73	Late Paleozoic polyphased tectonics in the SW Belledonne massif (external crystalline massifs, French) Tj ETQq1	0.78431	4 rgBT /Over
74	Eocene to Oligocene retrogression and recrystallization of the Stak eclogite in northwest Himalaya. Lithos, 2016, 240-243, 155-166.	1.4	21
75	3-D Pn tomography reveals continental subduction at the boundaries of the Adriatic microplate in the absence of a precursor oceanic slab. Earth and Planetary Science Letters, 2019, 510, 131-141.	4.4	21
76	Tectonometamorphic evolution of the Atbashi highâ€ <i>P</i> units (Kyrgyz <scp>CAOB</scp> , Tien Shan): Implications for the closure of the Turkestan Ocean and continental subduction–exhumation of the South Kazakh continental margin. Journal of Metamorphic Geology, 2018, 36, 959-985.	3.4	20
77	Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External) Tj ETQq1 1 0.784	1314 rgBT 2.2	/Qyerlock 1
78	Tectono-metamorphic evolution of the Briançonnais zone (Modane-Aussois and Southern Vanoise) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf
79	Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic. Tectonics, 2014, 33, 1989-2012.	2.8	18
80	Reply to Comment on "Large-scale geometry, offset and kinematic evolution of the Karakorum fault, TibetË®. Earth and Planetary Science Letters, 2004, 229, 159-163.	4.4	17
81	Evidence for pre-Cretaceous history and partial Neogene (19–9Ma) reequilibration in the Karakorum (NW Himalayan Syntaxis) from 40Ar–39Ar amphibole dating. Journal of Asian Earth Sciences, 2006, 27, 371-391.	2.3	17
82	Serpentinization of New Caledonia peridotites: from depth to (sub-)surface. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	17
83	Tracing the Oligocene-Miocene Evolution of the Western Alps Drainage Divide with Pebble Petrology, Geochemistry, and Raman Spectroscopy of Foreland Basin Deposits. Journal of Geology, 2012, 120, 603-624.	1.4	14
84	Permian charnockites in the Pobeda area: Implications for Tarim mantle plume activity and HT metamorphism in the South Tien Shan range. Lithos, 2018, 304-307, 135-154.	1.4	14
85	Carboniferous highâ€∢i>P metamorphism and deformation in the Belledonne Massif (Western Alps). Journal of Metamorphic Geology, 2021, 39, 1009-1044.	3.4	12
86	Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External) Tj ETQq0 0 0 rgB	T /Qverloc 2.2	k 10 Tf 50 2
87	Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France). Swiss Journal of Geosciences, 2012, 105, 39-48.	1.2	11
88	Late Paleozoic polyphased tectonics in the SW Belledonne massif (external crystalline massifs, French) Tj ETQq0 C	0.0 rgBT /C	overlock 10 10
89	Reply to Comment on "Corundum-bearing garnet peridotites from northern Dominican Republic: A metamorphic product of an arc cumulate in the Caribbean subduction zone" by Richard N. Abbott and Grenville Draper. Lithos, 2010, 117, 327-330.	1.4	10
90	Carbonated Inheritance in the Eastern Tibetan Lithospheric Mantle: Petrological Evidences and	2.5	9

Carbonated Inheritance in the Eastern Tibetan Lithospheric Mantle: Petrological Evidences and Geodynamic Implications. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008495. 90 2.5

STéPHANE GUILLOT

#	Article	IF	CITATIONS
91	HP metamorphic belt along the Indus suture zone of NW Himalaya: new discoveries and significance. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des Planètes =, 1997, 325, 773-778.	0.2	8
92	Protolith of the Stak eclogite in the northwestern Himalaya. Italian Journal of Geosciences, 2017, 136, 64-72.	0.8	8
93	SHRIMP zircon ages of eclogites in the Stak massif, northern Pakistan. Himalayan Journal of Sciences, 2008, 5, 119-120.	0.3	7
94	Change in Subduction Dip Angle of the Indian Continental Lithosphere Inferred From the Western Himalayan Eclogites. Frontiers in Earth Science, 2022, 9, .	1.8	7
95	Observation of rapid long-range seismic bursts in the Japan Trench subduction leading to the nucleation of the Tohoku earthquake. Earth and Planetary Science Letters, 2022, 594, 117696.	4.4	7
96	Receiver function mapping of the mantle transition zone beneath the Western Alps: New constraints on slab subduction and mantle upwelling. Earth and Planetary Science Letters, 2022, 577, 117267.	4.4	6
97	Himalayan ultrahigh pressure rocks and warped Indian subduction plane. Himalayan Journal of Sciences, 2006, 2, 148-149.	0.3	5
98	Tectono-metamorphic evolution of an evaporitic décollement as recorded by mineral and fluid geochemistry: The "Nappe des Gypses―(Western Alps) case study. Lithos, 2020, 358-359, 105419.	1.4	5
99	HT overprint of HP granulites in the Oisans–Pelvoux massif: Implications for the dynamics of the Variscan collision in the external western Alps. Lithos, 2022, 416-417, 106650.	1.4	5
100	Fe–Ni-rich Silicate Aggregates Formed after Sulfides in High-pressure Serpentinites. Journal of Petrology, 0, , .	2.8	1
101	Occurrences of sulphide minerals in the Stak and Tso Morari eclogites: Implications for the behaviour of sulphur and chalcophile elements in subduction zones. Himalayan Journal of Sciences,	0.3	1