Quanyong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11212493/publications.pdf

Version: 2024-02-01

		1163117	1588992	
8	351	8	8	
papers	citations	h-index	g-index	
8	8	8	387	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers. Scientific Reports, 2016, 6, 23595.	3.3	86
2	Recent advances in mid infrared (3-5 $\hat{A}\mu m)$ Quantum Cascade Lasers. Optical Materials Express, 2013, 3, 1872.	3.0	82
3	Room temperature terahertz semiconductor frequency comb. Nature Communications, 2019, 10, 2403.	12.8	50
4	Solid source MBE growth of quantum cascade lasers. Applied Physics A: Materials Science and Processing, 2009, 97, 527-532.	2.3	35
5	Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation. Photonics, 2016, 3, 42.	2.0	33
6	Thermal induced facet destructive feature of quantum cascade lasers. Applied Physics Letters, 2010, 96,	3.3	27
7	High efficiency quantum cascade laser frequency comb. Scientific Reports, 2017, 7, 43806.	3.3	25
8	High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λâ^1/43.8-8.3 µm. Optics Express, 2020, 28, 15181.	3.4	13