Shuwen Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11210413/publications.pdf

Version: 2024-02-01

42 2,873 26 42 papers citations h-index g-index

43 43 43 2648 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Photosensitized Transformation of Peroxymonosulfate in Dissolved Organic Matter Solutions under Simulated Solar Irradiation. Environmental Science & Environmental Science & 2022, 56, 1963-1972.	4.6	38
2	Determination of trace organic contaminants by a novel mixed-mode online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Environmental Pollution, 2022, 303, 119112.	3.7	12
3	Occurrence, distribution, and potential health risks of psychoactive substances in Chinese surface waters. Journal of Hazardous Materials, 2021, 407, 124851.	6.5	9
4	Reevaluation of the contributions of reactive intermediates to the photochemical transformation of $17\hat{1}^2$ -estradiol in sewage effluent. Water Research, 2021, 189, 116633.	5. 3	16
5	Comprehensive Understanding of the Phototransformation Process of Macrolide Antibiotics in Simulated Natural Waters. ACS ES&T Water, 2021, 1, 938-948.	2.3	15
6	Microheterogeneous Distribution of Hydroxyl Radicals in Illuminated Dissolved Organic Matter Solutions. Environmental Science & Environmental Science	4.6	31
7	Phototransformation of an emerging cyanotoxin (Aerucyclamide A) in simulated natural waters. Water Research, 2021, 201, 117339.	5.3	13
8	Fluorescent whitening agents in Baiyangdian Lake in North China: Analysis, occurrence, distribution and ecological risk assessment. Environmental Pollution, 2021, 291, 118235.	3.7	5
9	Photochemical Formation of Methylhydroperoxide in Dissolved Organic Matter Solutions. Environmental Science & Environmental Sc	4.6	8
10	Overview of the Phototransformation of Wastewater Effluents by High-Resolution Mass Spectrometry. Environmental Science & Envi	4.6	37
11	Carbonate Radical Oxidation of Cylindrospermopsin (Cyanotoxin): Kinetic Studies and Mechanistic Consideration. Environmental Science & Environmental S	4.6	26
12	Development of fluorescence surrogates to predict the ferrate(VI) oxidation of pharmaceuticals in wastewater effluents. Water Research, 2020, 185, 116256.	5. 3	17
13	Kinetic Consideration of Photochemical Formation and Decay of Superoxide Radical in Dissolved Organic Matter Solutions. Environmental Science & Enviro	4.6	63
14	Preparation of mesoporous anatase titania with large secondary mesopores and extraordinarily high photocatalytic performances. Applied Catalysis B: Environmental, 2020, 269, 118756.	10.8	17
15	Triplet Photochemistry of Dissolved Black Carbon and Its Effects on the Photochemical Formation of Reactive Oxygen Species. Environmental Science & En	4.6	71
16	Development of an ammonium chloride-enhanced thermal-assisted-ESI LC-HRMS method for the characterization of chlorinated paraffins. Environmental Pollution, 2019, 255, 113303.	3.7	15
17	Assessing the contribution of hydroxylation species in the photochemical transformation of primidone (pharmaceutical). Science of the Total Environment, 2019, 696, 133826.	3.9	10
18	Mesoporous anatase crystal-silica nanocomposites with large intrawall mesopores presenting quite excellent photocatalytic performances. Applied Catalysis B: Environmental, 2019, 246, 284-295.	10.8	21

#	Article	IF	Citations
19	Degradation of glucocorticoids in aqueous solution by dielectric barrier discharge: Kinetics, mechanisms, and degradation pathways. Chemical Engineering Journal, 2019, 374, 412-428.	6.6	47
20	Photochemical formation of carbonate radical and its reaction with dissolved organic matters. Water Research, 2019, 161, 288-296.	5.3	86
21	Triplet-State Photochemistry of Dissolved Organic Matter: Triplet-State Energy Distribution and Surface Electric Charge Conditions. Environmental Science & Electric Charge Conditions. Environmental Science & Electric Charge Conditions.	4.6	119
22	Kinetics studies and mechanistic considerations on the reactions of superoxide radical ions with dissolved organic matter. Water Research, 2019, 149, 56-64.	5.3	53
23	Occurrence and indicators of pharmaceuticals in Chinese streams: A nationwide study. Environmental Pollution, 2018, 236, 889-898.	3.7	90
24	Occurrence and estrogenic activity of steroid hormones in Chinese streams: A nationwide study based on a combination of chemical and biological tools. Environment International, 2018, 118, 1-8.	4.8	62
25	Mechanistic consideration of the photochemical transformation of domoic acid (algal toxin) in DOM-Rich brackish water. Chemosphere, 2018, 209, 328-337.	4.2	11
26	Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. Water Research, 2018, 147, 184-194.	5.3	289
27	Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents. Environmental Science & Environmental Sci	4.6	309
28	Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents. Water Research, 2017, 112, 120-128.	5.3	101
29	Development of Fluorescence Surrogates to Predict the Photochemical Transformation of Pharmaceuticals in Wastewater Effluents. Environmental Science & Effluents.	4.6	58
30	Three-dimensional interconnected mesoporous anatase TiO2 exhibiting unique photocatalytic performances. Applied Catalysis B: Environmental, 2017, 217, 293-302.	10.8	45
31	Photochemical Transformation of Nicotine in Wastewater Effluent. Environmental Science & Emp; Technology, 2017, 51, 11718-11730.	4.6	55
32	Development of Novel Chemical Probes for Examining Triplet Natural Organic Matter under Solar Illumination. Environmental Science & Examp; Technology, 2017, 51, 11066-11074.	4.6	56
33	Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen. Water Research, 2017, 109, 266-273.	5.3	112
34	Effects of C ₆₀ on the Photochemical Formation of Reactive Oxygen Species from Natural Organic Matter. Environmental Science & Environmental	4.6	25
35	Tin porphyrin immobilization significantly enhances visible-light-photosensitized degradation of Microcystins: Mechanistic implications. Applied Catalysis B: Environmental, 2016, 199, 33-44.	10.8	12
36	Ozonation of Cylindrospermopsin (Cyanotoxin): Degradation Mechanisms and Cytotoxicity Assessments. Environmental Science & Env	4.6	30

#	Article	IF	CITATIONS
37	Photochemical Transformation of Aminoglycoside Antibiotics in Simulated Natural Waters. Environmental Science & Environmental	4.6	80
38	Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review. Environmental Sciences: Processes and Impacts, 2014, 16, 697-720.	1.7	138
39	Photochemically Induced Formation of Reactive Oxygen Species (ROS) from Effluent Organic Matter. Environmental Science & Envir	4.6	274
40	Mechanistic considerations of photosensitized transformation of microcystin-LR (cyanobacterial) Tj ETQq0 0 0 r	gBT /Over 3.7	lock 10 Tf 50
41	Degradation of Diclofenac by Advanced Oxidation and Reduction Processes: Kinetic Studies, Degradation Pathways and Toxicity Assessments. Water Research, 2013, 47, 1909-1918.	5.3	267
42	Hydroxyl Radical Oxidation of Cylindrospermopsin (Cyanobacterial Toxin) and Its Role in the Photochemical Transformation. Environmental Science & Environmental Science & 2012, 46, 12608-12615.	4.6	98