B Sreenivasulu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11208714/publications.pdf Version: 2024-02-01

R SDEENIVASIIIII

#	Article	IF	CITATIONS
1	Complexation Behavior of the Tri- <i>n</i> -butyl Phosphate Ligand with Pu(IV) and Zr(IV): A Computational Study. Journal of Physical Chemistry A, 2016, 120, 4201-4210.	2.5	39
2	Assorted functionality-appended UiO-66-NH ₂ for highly efficient uranium(<scp>vi</scp>) sorption at acidic/neutral/basic pH. RSC Advances, 2020, 10, 14650-14661.	3.6	34
3	Mixer-settler runs for the evaluation of tri- <i>iso</i> -amyl phosphate (TiAP) as an alternate extractant to tri- <i>n</i> -butyl phosphate (TBP) for reprocessing applications. Radiochimica Acta, 2015, 103, 101-108.	1.2	20
4	Physicochemical properties and radiolytic degradation studies on tri-iso-amyl phosphate (TiAP). Radiochimica Acta, 2017, 105, 249-261.	1.2	20
5	Separation of U(VI) and Pu(IV) from Am(III) and Trivalent Lanthanides with Tri-iso-amyl Phosphate (TiAP) as the Extractant by Using an Ejector Mixer-Settler. Solvent Extraction and Ion Exchange, 2015, 33, 120-133.	2.0	18
6	Post synthetically modified IRMOF-3 for efficient recovery and selective sensing of U(<scp>vi</scp>) from aqueous medium. RSC Advances, 2021, 11, 28126-28137.	3.6	18
7	Search for physiologically active compounds. Proceedings of the Indian Academy of Sciences - Section A, 1974, 79, 41-47.	0.2	16
8	Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 2165.	1.5	16
9	Dissolution and characterisation studies on U–Zr and U–Pu–Zr alloys in nitric acid medium. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 789-800.	1.5	15
10	Highly efficient functionalized MOF-LIC-1 for extraction of U(<scp>vi</scp>) and Th(<scp>iv</scp>) from aqueous solution: experimental and theoretical studies. Dalton Transactions, 2022, 51, 3557-3571.	3.3	12
11	Studies Related to the Processing of U–Zr and U–Pu–Zr Metallic Fuels Using Tri-iso-amyl Phosphate (TiAP) as Extractant. Solvent Extraction and Ion Exchange, 2016, 34, 422-438.	2.0	10
12	Exploring long-chain hexaalkyl phosphoramides for actinide extraction: A combined experimental and theoretical investigation. Inorganica Chimica Acta, 2021, 525, 120496.	2.4	8
13	Search for physiologically active compounds. Proceedings of the Indian Academy of Sciences - Section A, 1974, 80, 273-277.	0.2	6
14	A Facile Synthesis of 3,7-Disubstituted-4,8-dimethyl-2,6-dioxo-2H,6H-benzo[1,2-b:3,4-bâ€2]dipyrans and Their Antifeedant Activity. Synthetic Communications, 1996, 26, 3373-3381.	2.1	6
15	Effect of gamma irradiation on thermal decomposition of tri-iso-amyl phosphate–nitric acid biphasic systems. Journal of Thermal Analysis and Calorimetry, 2016, 125, 483-495.	3.6	6
16	A Facile Synthesis of 3,7-Diphenyl-4,6-Distyryl-2,8-Dioxo-2H,8H-Benzo[1,2-b:5,4-b′]dipyrans and Their Antifeedant Activity. Synthetic Communications, 1997, 27, 2281-2287.	2.1	5
17	Thermal decomposition behaviour of irradiated tri n -butyl phosphate and mixture of di and mono n -butyl phosphate-nitric acid systems. Thermochimica Acta, 2017, 657, 1-11.	2.7	5
18	ZIF-90: PSM Assisted Acid Resistance, Accelerated Sequestration and Selective Sensing of Actinides. Surfaces and Interfaces, 2022, 32, 102095.	3.0	5

B SREENIVASULU

#	Article	IF	CITATIONS
19	Empirical equations for the prediction of third phase formation limits in the extraction of thorium nitrate by tri-iso-amyl phosphate (TiAP). Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 489-495.	1.5	4
20	Experimental and theoretical studies on solvent extraction of uranium(VI) with hexapropyl and hexabutyl phosphoramide extractants. Solvent Extraction and Ion Exchange, 2022, 40, 312-332.	2.0	4
21	Demonstration of Aqueous Reprocessing of U-Zr and U-Pu-Zr Metallic Alloy Fuels Using an Ejector Mixer-settler with Tri-n-Butyl Phosphate (TBP) as the Extractant. Solvent Extraction and Ion Exchange, 2021, 39, 271-289.	2.0	3
22	Achieving tunable luminescence in rare earth free IRMOF-3 through post synthetic modifications by judicious choice of organic linker. Optical Materials, 2022, 131, 112660.	3.6	3
23	Mixer-settler runs with tri-iso-amyl phosphate and tri-n-butyl phosphate for the aqueous reprocessing of U–Zr alloy fuels. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 1207.	1.5	1
24	Oxidation and dissolution behavior of UZr alloys for aqueous reprocessing applications. Progress in Nuclear Energy, 2022, 144, 104087.	2.9	1
25	Thermophysical properties of hexapropyl and hexabutyl phosphoramides in n-dodecane. Results in Chemistry, 2022, 4, 100346.	2.0	1