
Mojtaba Moazzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11207206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probabilistic health risk assessment and concentration of trace elements in meat, egg, and milk of Iran. International Journal of Environmental Analytical Chemistry, 2023, 103, 6940-6951.	3.3	9
2	Probabilistic Health Risk Assessment of Trace Elements in Baby Food and Milk Powder Using ICP-OES Method. Biological Trace Element Research, 2022, 200, 2486-2497.	3.5	51
3	Measurement of Polycyclic Aromatic Hydrocarbons in Baby Food Samples in Tehran, Iran With Magnetic-Solid-Phase-Extraction and Gas-Chromatography/Mass-Spectrometry Method: A Health Risk Assessment. Frontiers in Nutrition, 2022, 9, 833158.	3.7	13
4	Analysis of polychlorinated biphenyls in cream and ice cream using modified QuEChERS extraction and GCâ€QqQâ€MS/MS method: A risk assessment study. International Journal of Dairy Technology, 2022, 75, 448-459.	2.8	10
5	Evaluation of polycyclic aromatic hydrocarbons (PAHs) in bottled water samples (non-carbonated,) Tj ETQq1 1 assessment. Applied Biological Chemistry, 2022, 65, .	0.784314 ı 1.9	rgBT /Overloc 7
6	The Concentration and Probabilistic Health Risk of Potentially Toxic Elements (PTEs) in Edible Mushrooms (Wild and Cultivated) Samples Collected from Different Cities of Iran. Biological Trace Element Research, 2021, 199, 389-400.	3.5	45
7	Concentration and health risk assessment of polycyclic aromatic hydrocarbons in commercial tea and coffee samples marketed in Iran. Environmental Science and Pollution Research, 2021, 28, 4827-4839.	5.3	49
8	Monitoring of polycyclic aromatic hydrocarbons and probabilistic health risk assessment in yogurt and butter in Iran. Food Science and Nutrition, 2021, 9, 2114-2128.	3.4	48
9	Measurement of phthalate acid esters in non-alcoholic malt beverages by MSPE-GC/MS method in Tehran city: chemometrics. Environmental Science and Pollution Research, 2021, 28, 51897-51907.	5.3	32
10	Measurement of polycyclic aromatic hydrocarbons (PAHs) in edible mushrooms (raw, grilled and) Tj ETQq0 0 0	rgBT /Over 1.9	lock 10 Tf 50
11	The measurement and health risk assessment of polychlorinated biphenyls in butter samples using the QuEChERS/GCâ€MS method. International Journal of Dairy Technology, 2021, 74, 737-746.	2.8	12
12	Levels of polycyclic aromatic hydrocarbons in milk and milk powder samples and their likely risk assessment in Iranian population. Journal of Food Composition and Analysis, 2020, 85, 103331.	3.9	44
13	Determination of phthalates in bottled milk by a modified nano adsorbent: Presence, effects of fat and storage time, and implications for human health. Microchemical Journal, 2020, 159, 105516.	4.5	62
14	Multi-walled carbon nanotubes modified with iron oxide and silver nanoparticles (MWCNT-Fe3O4/Ag) as a novel adsorbent for determining PAEs in carbonated soft drinks using magnetic SPE-GC/MS method. Arabian Journal of Chemistry, 2019, 12, 476-488.	4.9	94
15	Method development for determination of migrated phthalate acid esters from polyethylene terephthalate (PET) packaging into traditional Iranian drinking beverage (Doogh) samples: a novel approach of MSPE-GC/MS technique. Environmental Science and Pollution Research, 2018, 25, 12728-12738.	5.3	53
16	Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study. Food and Chemical Toxicology, 2018, 115, 436-446.	3.6	148
17	Determination of phthalate acid esters (PAEs) in carbonated soft drinks with MSPE/GC–MS method. Toxin Reviews, 2018, 37, 319-326.	3.4	47
18	Polycyclic aromatic hydrocarbons in Iranian Kebabs. Food Control, 2016, 60, 57-63.	5.5	67

#	Article	IF	CITATIONS
19	Assessment of Phthalate Esters in A Variety of Carbonated Beverages Bottled in PET. Muhandisī-i BihdÄsht-i Muá,¥Ä«á¹ , 2014, 2, 7-18.	0.2	10
20	Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in grilled meat samples. Talanta, 2013, 115, 957-965.	5.5	102
21	Determination of phthalate acid esters (PAEs) in bottled water distributed in tehran: a health risk assessment study. International Journal of Environmental Analytical Chemistry, 0, , 1-15.	3.3	16