Zaid Odibat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11206842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos, Solitons and Fractals, 2008, 36, 167-174.	2.5	334
2	Homotopy perturbation method for nonlinear partial differential equations of fractional order. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 365, 345-350.	0.9	315
3	A generalized differential transform method for linear partial differential equations of fractional order. Applied Mathematics Letters, 2008, 21, 194-199.	1.5	310
4	Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Applied Mathematics and Computation, 2006, 177, 488-494.	1.4	293
5	Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons and Fractals, 2007, 31, 1248-1255.	2.5	284
6	The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Computers and Mathematics With Applications, 2009, 58, 2199-2208.	1.4	217
7	Numerical approach to differential equations of fractional order. Journal of Computational and Applied Mathematics, 2007, 207, 96-110.	1.1	209
8	Numerical methods for nonlinear partial differential equations of fractional order. Applied Mathematical Modelling, 2008, 32, 28-39.	2.2	208
9	Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 271-279.	0.9	205
10	Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 370, 379-387.	0.9	177
11	Generalized differential transform method: Application to differential equations of fractional order. Applied Mathematics and Computation, 2008, 197, 467-477.	1.4	176
12	Application of generalized differential transform method to multi-order fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 1642-1654.	1.7	156
13	Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Computers and Mathematics With Applications, 2007, 54, 910-919.	1.4	139
14	A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula. Journal of Computational and Applied Mathematics, 2008, 220, 85-95.	1.1	119
15	A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Applied Mathematical Modelling, 2010, 34, 593-600.	2.2	115
16	The homotopy analysis method for handling systems of fractional differential equations. Applied Mathematical Modelling, 2010, 34, 24-35.	2.2	102
17	Variational iteration method for solving the space- and time-fractional KdV equation. Numerical Methods for Partial Differential Equations, 2008, 24, 262-271.	2.0	77
18	Variational iteration method for solving nonlinear boundary value problems. Applied Mathematics and Computation, 2006, 183, 1351-1358.	1.4	76

ZAID ODIBAT

#	Article	IF	CITATIONS
19	Numerical solution of Fokker–Planck equation with space- and time-fractional derivatives. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 369, 349-358.	0.9	70
20	A reliable treatment of homotopy perturbation method for Klein–Gordon equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 365, 351-357.	0.9	67
21	Numerical solutions of the spaceâ€time fractional advectionâ€dispersion equation. Numerical Methods for Partial Differential Equations, 2008, 24, 1416-1429.	2.0	64
22	A Robust Computational Algorithm of Homotopy Asymptotic Method for Solving Systems of Fractional Differential Equations. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	0.7	62
23	On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations. Journal of Computational and Applied Mathematics, 2011, 235, 2956-2968.	1.1	52
24	An optimized decomposition method for nonlinear ordinary and partial differential equations. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123323.	1.2	23
25	An optimized linearization-based predictor-corrector algorithm for the numerical simulation of nonlinear FDEs. Physica Scripta, 2020, 95, 065202.	1.2	16
26	ANALYTICAL COMPARISON BETWEEN THE HOMOTOPY PERTURBATION METHOD AND VARIATIONAL ITERATION METHOD FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER. International Journal of Modern Physics B, 2008, 22, 4041-4058.	1.0	14
27	An Implementation of the Generalized Differential Transform Scheme for Simulating Impulsive Fractional Differential Equations. Mathematical Problems in Engineering, 2022, 2022, 1-11.	0.6	13
28	The optimal homotopy analysis method applied on nonlinear timeâ€fractional hyperbolic partial differential equation <scp>s</scp> . Numerical Methods for Partial Differential Equations, 2021, 37, 2008-2022.	2.0	9
29	The optimized decomposition method for a reliable treatment of IVPs for second order differential equations. Physica Scripta, 2021, 96, 095206.	1.2	6
30	A Legendreâ€based approach of the optimized decomposition method for solving nonlinear Caputoâ€type fractional differential equations. Mathematical Methods in the Applied Sciences, 0, , .	1.2	6