Nan K Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1120454/publications.pdf

Version: 2024-02-01

623734 752698 20 687 14 20 citations h-index g-index papers 22 22 22 950 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Molecular Description of the LCST Behavior of an Elastin-Like Polypeptide. Biomacromolecules, 2014, 15, 3522-3530.	5.4	146
2	LCST Behavior is Manifested in a Single Molecule: Elastin-Like polypeptide (VPGVG) < sub > <i> n < /i > . Biomacromolecules, 2016, 17, 111-118.</i>	5.4	76
3	Intrinsically disordered proteins access a range of hysteretic phase separation behaviors. Science Advances, 2019, 5, eaax5177.	10.3	64
4	Atomic-level engineering and imaging of polypeptoid crystal lattices. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22491-22499.	7.1	48
5	Cooperative Intramolecular Hydrogen Bonding Strongly Enforces <i>cis</i> -Peptoid Folding. Journal of the American Chemical Society, 2019, 141, 19436-19447.	13.7	46
6	Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides. Biomacromolecules, 2018, 19, 2496-2505.	5.4	35
7	Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles. Soft Matter, 2015, 11, 8236-8245.	2.7	34
8	Controlling electroosmotic flow by polymer coating: a dissipative particle dynamics study. Microfluidics and Nanofluidics, 2011, 10, 977-990.	2.2	31
9	Enzymatic Polymerization of High Molecular Weight DNA Amphiphiles That Selfâ€Assemble into Starâ€Like Micelles. Advanced Materials, 2014, 26, 3050-3054.	21.0	31
10	Electroosmotic flow in a nanofluidic channel coated with neutral polymers. Microfluidics and Nanofluidics, 2010, 9, 1051-1062.	2.2	30
11	Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance. ACS Applied Materials & Interfaces, 2016, 8, 19494-19506.	8.0	30
12	Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics. ACS Nano, 2015, 9, 12374-12382.	14.6	28
13	Insights into Structure and Aggregation Behavior of Elastin-like Polypeptide Coacervates: All-Atom Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2021, 125, 8627-8635.	2.6	18
14	Progress in molecular modelling of DNA materials. Molecular Simulation, 2014, 40, 777-783.	2.0	17
15	An Implicit Solvent Ionic Strength (ISIS) Method to Model Polyelectrolyte Systems with Dissipative Particle Dynamics. Macromolecular Theory and Simulations, 2015, 24, 7-12.	1.4	16
16	In silico structure prediction of full-length cotton cellulose synthase protein (GhCESA1) and its hierarchical complexes. Cellulose, 2020, 27, 5597-5616.	4.9	13
17	Salt Responsive Morphologies of ssDNAâ€Based Triblock Polyelectrolytes in Semiâ€Dilute Regime: Effect of Volume Fractions and Polyelectrolyte Length. Macromolecular Rapid Communications, 2017, 38, 1700422.	3.9	11
18	Functional Modification of Silica through Enhanced Adsorption of Elastin-Like Polypeptide Block Copolymers. Biomacromolecules, 2018, 19, 298-306.	5 . 4	11

#	Article	IF	CITATIONS
19	Dissipative Particle Dynamics Approaches to Modeling the Self-Assembly and Morphology of Neutral and Ionic Block Copolymers in Solution. Molecular Modeling and Simulation, 2021, , 75-100.	0.2	1
20	A Comparison between the Lower Critical Solution Temperature Behavior of Polymers and Biomacromolecules. Physchem, 2022, 2, 52-71.	1.1	1