Mauricio Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1120364/publications.pdf

Version: 2024-02-01

87888 82547 5,643 81 38 72 citations h-index g-index papers 99 99 99 7527 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cigarette smoking is a secondary cause of folliculin loss. Thorax, 2023, 78, 402-408.	5.6	3
2	Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice <i>in vivo</i> . Biochemical Journal, 2022, 479, 401-424.	3.7	6
3	Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biology, 2022, 50, 102226.	9.0	9
4	Romulus and Remus of Inflammation: The Conflicting Roles of MAP2K1 and MAP2K2 in Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 479-480.	2.9	1
5	Editorial: Defining and Characterizing Respiratory Disease in an Aging Population. Frontiers in Medicine, 2022, 9, 889834.	2.6	1
6	Loss of Amphiregulin drives inflammation and endothelial apoptosis in pulmonary hypertension. Life Science Alliance, 2022, 5, e202101264.	2.8	6
7	Colocalization of Gene Expression and DNA Methylation with Genetic Risk Variants Supports Functional Roles of <i>MUC5B</i> and <i>DSP</i> in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1259-1270.	5.6	12
8	Topographic heterogeneity of lung microbiota in end-stage idiopathic pulmonary fibrosis: the Microbiome in Lung Explants-2 (MiLEs-2) study. Thorax, 2021, 76, 239-247.	5.6	11
9	Determination of Senescent Myofibroblasts in Precision-Cut Lung. Methods in Molecular Biology, 2021, 2299, 139-145.	0.9	4
10	Disparate Interferon Signaling and Shared Aberrant Basaloid Cells in Single-Cell Profiling of Idiopathic Pulmonary Fibrosis and Systemic Sclerosis-Associated Interstitial Lung Disease. Frontiers in Immunology, 2021, 12, 595811.	4.8	54
11	Single cell RNA sequencing identifies IGFBP5 and QKI as ciliated epithelial cell genes associated with severe COPD. Respiratory Research, 2021, 22, 100.	3.6	18
12	Cellular Senescence in Lung Fibrosis. International Journal of Molecular Sciences, 2021, 22, 7012.	4.1	33
13	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	8.2	38
14	Reduced Proportion and Activity of Natural Killer Cells in the Lung of Patients with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 608-610.	5.6	9
15	Molecular Signatures of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 430-441.	2.9	23
16	Human ex vivo lung perfusion: a novel model to study human lung diseases. Scientific Reports, 2021, 11, 490.	3.3	15
17	Interleukin-6 mediates neutrophil mobilization from bone marrow in pulmonary hypertension. Cellular and Molecular Immunology, 2021, 18, 374-384.	10.5	36
18	Effect of a Surfactant Additive on Drug Transport and Distribution Uniformity After Aerosol Delivery to Ex Vivo Lungs. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, , .	1.4	0

#	Article	IF	CITATIONS
19	Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Science Advances, 2021, 7, eabh3794.	10.3	16
20	Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer. Science Translational Medicine, 2021, 13, eabf8495.	12.4	16
21	Mesenchymal stem cells reduce ER stress via PERKâ€Nrf2 pathway in an aged mouse model. Respirology, 2020, 25, 417-426.	2.3	16
22	Apoptosis of hematopoietic progenitor-derived adipose tissue–resident macrophages contributes to insulin resistance after myocardial infarction. Science Translational Medicine, 2020, 12, .	12.4	13
23	Lost in Translation: Endoplasmic Reticulum–Mitochondria Crosstalk in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 408-409.	2.9	3
24	Toll interacting protein protects bronchial epithelial cells from bleomycinâ€induced apoptosis. FASEB Journal, 2020, 34, 9884-9898.	0.5	27
25	Mitochondria, Aging, and Cellular Senescence: Implications for Scleroderma. Current Rheumatology Reports, 2020, 22, 37.	4.7	12
26	Impaired Bile Secretion Promotes Hepatobiliary Injury in Sickle Cell Disease. Hepatology, 2020, 72, 2165-2181.	7.3	12
27	Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10 , $1-15$.	1.7	64
28	Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 681-691.	2.9	79
29	Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biology, 2020, 33, 101509.	9.0	104
30	Deubiquitinase USP13 promotes extracellular matrix expression by stabilizing Smad4 in lung fibroblast cells. Translational Research, 2020, 223, 15-24.	5.0	7
31	Cigarette smoke exposure enhances transforming acidic coiled-coil–containing protein 2 turnover and thereby promotes emphysema. JCl Insight, 2020, 5, .	5.0	13
32	Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1. JCI Insight, 2020, 5, .	5.0	40
33	Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Annals of the Rheumatic Diseases, 2019, 78, 1379-1387.	0.9	178
34	Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. European Respiratory Journal, 2019, 54, 1802441.	6.7	400
35	Mesenchymal Regulation of the Microvascular Niche in Chronic Lung Diseases. , 2019, 9, 1431-1441.		2
36	MicroRNA-144-3p targets relaxin/insulin-like family peptide receptor 1 (RXFP1) expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis. Journal of Biological Chemistry, 2019, 294, 5008-5022.	3.4	29

#	Article	IF	CITATIONS
37	PINK1 attenuates mtDNA release in alveolar epithelial cells and TLR9 mediated profibrotic responses. PLoS ONE, 2019, 14, e0218003.	2.5	65
38	Cellular Senescence: The Trojan Horse in Chronic Lung Diseases. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 21-30.	2.9	45
39	Building Strong Neighborhoods in the Lung with a Little Help from My Mesenchymal Stem Cells. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1176-1178.	5.6	2
40	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation, 2019, 139, 2238-2255.	1.6	54
41	RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics, 2019, 20, 22.	2.8	11
42	Intracellular Heat Shock Protein 70 Deficiency in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 629-636.	2.9	26
43	Inflammatory Macrophage Expansion in Pulmonary Hypertension Depends upon Mobilization of Blood-Borne Monocytes. Journal of Immunology, 2018, 200, 3612-3625.	0.8	105
44	<scp>ATF</scp> 3 represses <scp>PINK</scp> 1 gene transcription in lung epithelial cells to control mitochondrial homeostasis. Aging Cell, 2018, 17, e12720.	6.7	86
45	Splenic hematopoietic stem cells display a preâ€activated phenotype. Immunology and Cell Biology, 2018, 96, 772-784.	2.3	12
46	Microbiome in lung explants of idiopathic pulmonary fibrosis: a case–control study in patients with end-stage fibrosis. Thorax, 2018, 73, 481-484.	5.6	56
47	Senescence of bone marrow-derived mesenchymal stem cells from patients with idiopathic pulmonary fibrosis. Stem Cell Research and Therapy, 2018, 9, 257.	5.5	70
48	Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation. Immunity, 2018, 49, 93-106.e7.	14.3	81
49	Idiopathic Pulmonary Fibrosis: Aging, Mitochondrial Dysfunction, and Cellular Bioenergetics. Frontiers in Medicine, 2018, 5, 10.	2.6	115
50	The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1492-1500.	3.6	55
51	Targeting the deubiquitinase STAMBP inhibits NALP7 inflammasome activity. Nature Communications, 2017, 8, 15203.	12.8	44
52	Endothelial Nox1 oxidase assembly in human pulmonary arterial hypertension; driver of Gremlin1-mediated proliferation. Clinical Science, 2017, 131, 2019-2035.	4.3	43
53	Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L92-L103.	2.9	32
54	Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nature Reviews Drug Discovery, 2017, 16, 755-772.	46.4	251

#	Article	IF	Citations
55	IPF lung fibroblasts have a senescent phenotype. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1164-L1173.	2.9	219
56	Targeting Pulmonary Endothelial Hemoglobin α Improves Nitric Oxide Signaling and Reverses Pulmonary Artery Endothelial Dysfunction. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 733-744.	2.9	24
57	Towards a global initiative for fibrosis treatment (GIFT). ERJ Open Research, 2017, 3, 00106-2017.	2.6	5
58	TSP1–CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovascular Research, 2017, 113, 15-29.	3.8	58
59	Impaired anti-fibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis. PLoS Neglected Tropical Diseases, 2017, 11, e0006006.	3.0	8
60	Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2017, 127, 405-414.	8.2	163
61	miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Research and Therapy, 2016, 18, 155.	3.5	96
62	Mesenchymal stem cells in the treatment of chronic lung disease. Respirology, 2016, 21, 1366-1375.	2.3	52
63	<scp>mTORC</scp> 1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in <scp>IPF</scp> fibroblasts. Aging Cell, 2016, 15, 1103-1112.	6.7	140
64	MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension. PLoS ONE, 2016, 11, e0153780.	2.5	47
65	Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. Stem Cells and Cloning: Advances and Applications, 2015, 8, 61.	2.3	27
66	Aging and Lung Disease. Clinical Impact and Cellular and Molecular Pathways. Annals of the American Thoracic Society, 2015, 12, S222-S227.	3.2	50
67	Parabiotic model for differentiating local and systemic effects of continuous and intermittent hypoxia. Journal of Applied Physiology, 2015, 118, 42-47.	2.5	5
68	PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. Journal of Clinical Investigation, 2015, 125, 521-538.	8.2	431
69	Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury. Advances in Bioscience and Biotechnology (Print), 2014, 05, 19-30.	0.7	39
70	Aging Mesenchymal Stem Cells Fail to Protect Because of Impaired Migration and Antiinflammatory Response. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 787-798.	5.6	166
71	Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 186-195.	3.1	50
72	Influence of age on wound healing and fibrosis. Journal of Pathology, 2013, 229, 310-322.	4.5	75

#	Article	lF	CITATION
73	Activation of Human Mesenchymal Stem Cells Impacts Their Therapeutic Abilities in Lung Injury by Increasing Interleukin (IL)-10 and IL-1RN Levels. Stem Cells Translational Medicine, 2013, 2, 884-895.	3.3	70
74	Role of Endoplasmic Reticulum Stress in Age-Related Susceptibility to Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 748-756.	2.9	118
75	Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Endotoxin-Induced Oxidation of Plasma Cysteine and Glutathione in Mice. Stem Cells International, 2010, 2010, 1-9.	2.5	39
76	Aging and Interstitial Lung Diseases: Unraveling an Old Forgotten Player in the Pathogenesis of Lung Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2010, 31, 607-617.	2.1	68
77	Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L37-L45.	2.9	73
78	Use of Senescence-Accelerated Mouse Model in Bleomycin-Induced Lung Injury Suggests That Bone Marrow-Derived Cells Can Alter the Outcome of Lung Injury in Aged Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 731-739.	3.6	76
79	Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L131-L141.	2.9	329
80	Bone Marrow–Derived Mesenchymal Stem Cells in Repair of the Injured Lung. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 145-152.	2.9	748
81	IPF: Let's Keep the Focus on the A(ge)TII cell. American Journal of Respiratory and Critical Care Medicine, 0, , .	5.6	0