Peter J Talling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112031/publications.pdf

Version: 2024-02-01

126907 118850 4,042 62 33 62 citations h-index g-index papers 69 69 69 2897 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nearâ€Bed Structure of Sediment Gravity Flows Measured by Motionâ€Sensing "Boulderâ€Like―Benthic Event Detectors (BEDs) in Monterey Canyon. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	2
2	How distinctive are flood-triggered turbidity currents?. Journal of Sedimentary Research, 2022, 92, 1-11.	1.6	11
3	Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth and Planetary Science Letters, 2022, 584, 117481.	4.4	10
4	First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 2022, 8, eabj3220.	10.3	18
5	Turbidity Currents Can Dictate Organic Carbon Fluxes Across Riverâ€Fed Fjords: An Example From Bute Inlet (BC, Canada). Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	7
6	Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020655.	3.4	5
7	Fidelity of turbidites as earthquake records. Nature Geoscience, 2021, 14, 113-116.	12.9	8
8	Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 2021, 562, 116845.	4.4	24
9	Knickpoints and crescentic bedform interactions in submarine channels. Sedimentology, 2021, 68, 1358-1377.	3.1	11
10	What determines the downstream evolution of turbidity currents?. Earth and Planetary Science Letters, 2020, 532, 116023.	4.4	52
11	A multi-disciplinary investigation of the AFEN Slide: the relationship between contourites and submarine landslides. Geological Society Special Publication, 2020, 500, 173-193.	1.3	8
12	Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature Communications, 2020, 11, 3129.	12.8	29
13	Lessons learned from the monitoring of turbidity currents and guidance for future platform designs. Geological Society Special Publication, 2020, 500, 605-634.	1.3	22
14	An integrated processâ€based model of flutes and tool marks in deepâ€water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology, 2020, 67, 1601-1666.	3.1	48
15	Novel Acoustic Method Provides First Detailed Measurements of Sediment Concentration Structure Within Submarine Turbidity Currents. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015904.	2.6	43
16	Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 161, 103300.	1.4	18
17	How turbidity current frequency and character varies down a fjordâ€delta system: Combining direct monitoring, deposits and seismic data. Sedimentology, 2019, 66, 1-31.	3.1	29
18	Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 153, 103108.	1.4	20

#	Article	lF	Citations
19	Direct Monitoring Reveals Initiation of Turbidity Currents From Extremely Dilute River Plumes. Geophysical Research Letters, 2019, 46, 11310-11320.	4.0	71
20	Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets. Marine Geology, 2019, 415, 105951.	2.1	20
21	What controls submarine channel development and the morphology of deltas entering deepâ€water fjords?. Earth Surface Processes and Landforms, 2019, 44, 535-551.	2.5	36
22	The relationship between ice sheets and submarine mass movements in the Nordic Seas during the Quaternary. Earth-Science Reviews, 2018, 178, 208-256.	9.1	15
23	Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions. Scientific Reports, 2018, 8, 1146.	3.3	42
24	Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas?. Geophysical Research Letters, 2018, 45, 855-863.	4.0	81
25	How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: Insights from active submarine channels. Geology, 2018, 46, 563-566.	4.4	82
26	Powerful turbidity currents driven by dense basal layers. Nature Communications, 2018, 9, 4114.	12.8	164
27	Which earthquakes trigger damaging submarine mass movements: Insights from a global record of submarine cable breaks?. Marine Geology, 2017, 384, 131-146.	2.1	67
28	Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan. Marine Geology, 2017, 384, 147-158.	2.1	56
29	Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances, 2017, 3, e1700200.	10.3	170
30	A General Model for the Helical Structure of Geophysical Flows in Channel Bends. Geophysical Research Letters, 2017, 44, 11,932.	4.0	28
31	Direct monitoring of active geohazards: emerging geophysical tools for deepâ€water assessments. Near Surface Geophysics, 2017, 15, 427-444.	1.2	45
32	Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore <scp>M</scp> artinique: From volcano flankâ€collapse to seafloor sediment failure?. Geochemistry, Geophysics, Geosystems, 2016, 17, 699-724.	2.5	34
33	Currentâ€aligned dewatering sheets and â€~enhanced' primary current lineation in turbidite sandstones of the Marnosoâ€arenacea Formation. Sedimentology, 2016, 63, 1260-1279.	3.1	4
34	The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A longâ€ŧerm (>1 Ma) record offshore Montserrat, Lesser Antilles. Geochemistry, Geophysics, Geosystems, 2016, 17, 2591-2611.	2.5	31
35	What causes large submarine landslides on low gradient (<2°) continental slopes with slow (â^1/40.15) Tj ETQ	q1,10.78 3.4	4314 rgBT /(71
36	Submarine record of volcanic island construction and collapse in the <scp>L</scp> esser <scp>A</scp> ntilles arc: First scientific drilling of submarine volcanic island landslides by <scp>IODP</scp> <scp>E</scp> xpedition 340. Geochemistry, Geophysics, Geosystems, 2015, 16, 420-442.	2.5	57

#	Article	IF	Citations
37	Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressureâ€driven slowâ€slip failure. Journal of Geophysical Research: Solid Earth, 2015, 120, 7986-8011.	3.4	16
38	New insights into landslide processes around volcanic islands from Remotely Operated Vehicle (ROV) observations offshore Montserrat. Geochemistry, Geophysics, Geosystems, 2015, 16, 2240-2261.	2.5	10
39	Rapid onset of mafic magmatism facilitated by volcanic edifice collapse. Geophysical Research Letters, 2015, 42, 4778-4785.	4.0	24
40	Longâ€term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands. Geochemistry, Geophysics, Geosystems, 2014, 15, 3322-3345.	2.5	43
41	Insights into Submarine Geohazards from Breaks in Subsea Telecommunication Cables. Oceanography, 2014, 27, 58-67.	1.0	142
42	New Insights into the Emplacement Dynamics of Volcanic Island Landslides. Oceanography, 2014, 27, 46-57.	1.0	38
43	On the fate of pumice rafts formed during the 2012 Havre submarine eruption. Nature Communications, 2014, 5, 3660.	12.8	89
44	The spatial and temporal distribution of grainâ€size breaks in turbidites. Sedimentology, 2014, 61, 1120-1156.	3.1	48
45	On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 2014, 352, 155-182.	2.1	221
46	Chapter 20 Multi-stage collapse events in the South Soufrià re Hills, Montserrat as recorded in marine sediment cores. Geological Society Memoir, 2014, 39, 383-397.	1.7	13
47	Late Pleistocene stratigraphy of IODP Site U1396 and compiled chronology offshore of south and south west Montserrat, Lesser Antilles. Geochemistry, Geophysics, Geosystems, 2014, 15, 3000-3020.	2.5	23
48	Coring disturbances in IODP piston cores with implications for offshore record of volcanic events and the Missoula megafloods. Geochemistry, Geophysics, Geosystems, 2014, 15, 3572-3590.	2.5	74
49	Turbidite record of frequency and source of large volume (>100 km ³) Canary Island landslides in the last 1.5 Ma: Implications for landslide triggers and geohazards. Geochemistry, Geophysics, Geosystems, 2013, 14, 2100-2123.	2.5	39
50	How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth-Science Reviews, 2013, 125, 244-287.	9.1	193
51	Multistage collapse of eight western Canary Island landslides in the last 1.5 Ma: Sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochemistry, Geophysics, Geosystems, 2013, 14, 2159-2181.	2.5	63
52	Timing, origin and emplacement dynamics of mass flows offshore of SE Montserrat in the last 110 ka: Implications for landslide and tsunami hazards, eruption history, and volcanic island evolution. Geochemistry, Geophysics, Geosystems, 2013, 14, 385-406.	2.5	26
53	Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 2012, 59, 1937-2003.	3.1	714
54	Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	80

PETER J TALLING

#	Article	IF	CITATION
55	Nearâ€synchronous and delayed initiation of long runâ€out submarine sediment flows from a recordâ€breaking river flood, offshore Taiwan. Geophysical Research Letters, 2012, 39, .	4.0	96
56	Submarine pyroclastic deposits formed during the 20th May 2006 dome collapse of the Soufrià re Hills Volcano, Montserrat. Bulletin of Volcanology, 2012, 74, 391-405.	3.0	27
57	The structure of the deposit produced by sedimentation of polydisperse suspensions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29
58	Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: A case study from Icod landslide on north Tenerife, Canary Islands. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	78
59	Evidence for carbonate platform failure during rapid sea-level rise; ca 14 000 year old bioclastic flow deposits in the Lesser Antilles. Sedimentology, 2010, 57, 735-759.	3.1	30
60	New insight into the evolution of large-volume turbidity currents: comparison of turbidite shape and previous modelling results. Sedimentology, 2007, 54, 737-769.	3.1	85
61	Onset of submarine debris flow deposition far from original giant landslide. Nature, 2007, 450, 541-544.	27.8	314
62	On the frequency distribution of turbidite thickness. Sedimentology, 2002, 48, 1297-1329.	3.1	67