
David J Mokler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1120303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo microdialysis shows differential effects of prenatal protein malnutrition and stress on norepinephrine, dopamine, and serotonin levels in rat orbital frontal cortex Behavioral Neuroscience, 2021, 135, 629-641.	0.6	2
2	Prenatal Protein Malnutrition Leads to Hemispheric Differences in the Extracellular Concentrations of Norepinephrine, Dopamine and Serotonin in the Medial Prefrontal Cortex of Adult Rats. Frontiers in Neuroscience, 2019, 13, 136.	1.4	10
3	Prenatal Protein Malnutrition Produces Resistance to Distraction Similar to Noradrenergic Deafferentation of the Prelimbic Cortex in a Sustained Attention Task. Frontiers in Neuroscience, 2019, 13, 123.	1.4	6
4	Evidence for a role of corticopetal, noradrenergic systems in the development of executive function. Neurobiology of Learning and Memory, 2017, 143, 94-100.	1.0	9
5	A Novel Method for Evaluating Postoperative Adhesions in Rats. Journal of Investigative Surgery, 2017, 30, 88-94.	0.6	3
6	Attenuation of postoperative adhesions using a modeled manual therapy. PLoS ONE, 2017, 12, e0178407.	1.1	23
7	DNA Methylation Signatures of Early Childhood Malnutrition Associated With Impairments in Attention and Cognition. Biological Psychiatry, 2016, 80, 765-774.	0.7	124
8	Prenatal protein level impacts homing behavior in Long-Evans rat pups. Nutritional Neuroscience, 2016, 19, 187-195.	1.5	8
9	Prenatal Nicotine Exposure Selectively Affects Nicotinic Receptor Expression in Primary and Associative Visual Cortices of the Fetal Baboon. Brain Pathology, 2015, 25, 171-181.	2.1	12
10	Prenatal protein malnutrition decreases KCNJ3 and 2DG activity in rat prefrontal cortex. Neuroscience, 2015, 286, 79-86.	1.1	9
11	Prenatal Malnutrition Leads to Deficits in Attentional Set Shifting and Decreases Metabolic Activity in Prefrontal Subregions that Control Executive Function. Developmental Neuroscience, 2014, 36, 532-541.	1.0	27
12	Effects of Combined Opioids on Pain and Mood in Mammals. Pain Research and Treatment, 2012, 2012, 1-11.	1.7	10
13	A microdialysis study of the medial prefrontal cortex of adolescent and adult rats. Neuropharmacology, 2011, 61, 544-549.	2.0	53
14	Fentanyl and Spiradoline Interactions in a Place-Conditioning Black-White Shuttle-Box. Pharmaceuticals, 2011, 4, 101-116.	1.7	3
15	Brainstem Serotonergic Deficiency in Sudden Infant Death Syndrome. JAMA - Journal of the American Medical Association, 2010, 303, 430.	3.8	271
16	Functional interrelations between nucleus raphé dorsalis and nucleus raphé medianus: A dual probe microdialysis study of glutamate-stimulated serotonin release. Brain Research Bulletin, 2009, 78, 132-138.	1.4	22
17	Stress-induced changes in extracellular dopamine and serotonin in the medial prefrontal cortex and dorsal hippocampus of prenatally malnourished rats. Brain Research, 2007, 1148, 226-233.	1.1	71
18	The limbic brain: Continuing resolution. Neuroscience and Biobehavioral Reviews, 2006, 30, 119-125.	2.9	38

DAVID J MOKLER

#	Article	IF	CITATIONS
19	A review of systems and networks of the limbic forebrain/limbic midbrain. Progress in Neurobiology, 2005, 75, 143-160.	2.8	412
20	Calcium influx through presynaptic 5-HT3 receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies. Neuroscience, 2004, 129, 703-718.	1.1	79
21	Modulation of 5-HT release in the hippocampus of 30-day-old rats exposed in utero to protein malnutrition. Developmental Brain Research, 2003, 142, 203-208.	2.1	32
22	Effects of prenatal protein malnutrition on the hippocampal formation. Neuroscience and Biobehavioral Reviews, 2002, 26, 471-483.	2.9	316
23	Development and Modulation of GABAAReceptor-mediated Neurotransmission in the CA1 Region of Prenatally Protein Malnourished Rats. Nutritional Neuroscience, 2001, 4, 109-119.	1.5	7
24	Decreased Accumbens Dopamine Release After Cocaine Challenge in Behaviorally Sensitized Female Rats. Pharmacology Biochemistry and Behavior, 2000, 65, 659-664.	1.3	7
25	Dreams and sleep: Are new schemas revealing?. Behavioral and Brain Sciences, 2000, 23, 976-976.	0.4	1
26	Dentate granule cell modulation in freely moving rats: vigilance state effects. Developmental Brain Research, 1999, 114, 143-148.	2.1	4
27	The effects of median raphé electrical stimulation on serotonin release in the dorsal hippocampal formation of prenatally protein malnourished rats. Brain Research, 1999, 838, 95-103.	1.1	28
28	Modulation of paired-pulse responses in the dentate gyrus: effects of prenatal protein malnutrition. Brain Research, 1999, 849, 45-57.	1.1	21
29	Serotonin neuronal release from dorsal hippocampus following electrical stimulation of the dorsal and median raph� nuclei in conscious rats. , 1998, 8, 262-273.		48
30	Effects of ventrolateral medullary NMDA-receptor antagonism on biogenic amines and pressor response to muscle contraction. Neuroscience Research, 1998, 32, 47-56.	1.0	24
31	Rostral ventrolateral medullary opioid receptor activation modulates pressor response to muscle contraction. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H139-H146.	1.5	14
32	Effects of Prenatal Protein Malnutrition on Hippocampal Long-Term Potentiation in Freely Moving Rats. Experimental Neurology, 1997, 148, 317-323.	2.0	43
33	Effects of Ketanserin on the Discrimination of Electrical Stimulation of the Dorsal Raphé Nucleus in Rats * *Presented in part at the Society for Neuroscience Meeting, Miami Beach, 1994 (Mokler et al.,) Tj ETQq1	1 0 <i>2</i> . 6 431	l4 rgBT /Over
34	Effects of ventrolateral medullary AMPA-receptor antagonism on pressor response during muscle contraction. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 272, H2774-H2781.	1.5	11
35	Extracellular serotonin changes in VLM during muscle contraction: effects of 5-HT1A-receptor activation. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2899-H2909.	1.5	12
36	Electrical stimulation of the dorsal raphe nucleus as a discriminative stimulus: Generalization to (±)-DOI. Pharmacology Biochemistry and Behavior, 1994, 48, 1041-1045.	1.3	2

DAVID J MOKLER

#	Article	IF	CITATIONS
37	Intrathecally administered increases persistent hindlimb flexion in rat. Neuroscience Letters, 1992, 146, 223-226.	1.0	6
38	Behaviors induced by 5-hydroxytryptophan in neonatal, preweaning, postweaning, and adult sprague-dawley rats. Pharmacology Biochemistry and Behavior, 1992, 42, 413-419.	1.3	7
39	Inhibition of chronic hindlimb flexion in rat: evidence for mediation by 5-hydroxytryptamine. Brain Research, 1991, 541, 216-224.	1.1	6
40	Discriminative stimulus properties of intracranial administration of delta-9-tetrahydrocannabinol. Drug Development Research, 1989, 16, 395-405.	1.4	2
41	Effects of dietary protein on food and water intake in spontaneously hypertensive rats. Physiology and Behavior, 1989, 45, 1267-1270.	1.0	1
42	Rats that acquire a THC discrimination more rapidly are more sensitive to THC and faster in reaching operant criteria. Pharmacology Biochemistry and Behavior, 1988, 29, 67-71.	1.3	10
43	(±)3,4-Methylenedioxymethamphetamine (MDMA) produces long-term reductions in brain 5-hydroxytryptamine in rats. European Journal of Pharmacology, 1987, 138, 265-268.	1.7	30
44	Neonatal administration of delta-9-tetrahydrocannabinol (THC) alters the neurochemical response to stress in the adult Fischer-344 rat. Neurotoxicology and Teratology, 1987, 9, 321-327.	1.2	45
45	The effects of intracranial administration of hallucinogens on operant behavior in the rat. II. 2,5-Dimethoxy-4-methylamphetamine (DOM). Pharmacology Biochemistry and Behavior, 1987, 28, 327-334.	1.3	2
46	The role of benzodiazepine receptors in the discriminative stimulus properties of delta-9-tetrahydrocannabinol. Life Sciences, 1986, 38, 1581-1589.	2.0	34
47	Neuroendocrine, biogenic amine and behavioral responsiveness to a repeated foot-shock-induced analgesia (FSIA) stressor in Sprague-Dawley (CD) and Fischer-344 (CDF) rats. Brain Research, 1986, 382, 71-80.	1.1	43
48	The effects of intracranial administration of hallucinogens on operant behavior in the rat I. lysergic acid diethylamide. Pharmacology Biochemistry and Behavior, 1986, 25, 717-725.	1.3	5
49	Mechanisms of the initial treatment phenomenon to diazepam in the rat. Psychopharmacology, 1985, 87, 242-246.	1.5	10
50	The 5HT2 antagonist pirenperone reverses disruption of FR-40 by hallucinogenic drugs. Pharmacology Biochemistry and Behavior, 1985, 22, 677-682.	1.3	23
51	Behavioral effects of intracerebroventricular administration of LSD, DOM, mescaline or lisuride. Pharmacology Biochemistry and Behavior, 1984, 21, 281-287.	1.3	11
52	Self-administration of central stimulants by rats: A comparison of the effects of d-amphetamine, methylphenidate and McNeil 4612. Pharmacology Biochemistry and Behavior, 1984, 20, 227-232.	1.3	26
53	Naloxone alters the effects of LSD, DOM and quipazine on operant behavior of rats. Pharmacology Biochemistry and Behavior, 1984, 21, 333-337.	1.3	6
54	Cyclazocine disruption of operant behavior is antagonized by naloxone and metergoline. Pharmacology Biochemistry and Behavior, 1983, 18, 41-45.	1.3	4

#	Article	IF	CITATIONS
55	Effects of chronic intracerebroventricular infusion of angiotensin II on arterial pressure and fluid homeostasis Hypertension, 1982, 4, 312-319.	1.3	27
56	The behavioral effects of hallucinogens in rats following 5,7-dihydroxytryptamine administration into the medial forebrain bundle. Pharmacology Biochemistry and Behavior, 1981, 14, 915-918.	1.3	7