
Ryszard Grybos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1120297/publications.pdf Version: 2024-02-01

PVSZADD CDVROS

#	Article	IF	CITATIONS
1	Vanadium complexes with salicylaldehyde-based Schiff base ligands—structure, properties and biological activity. Journal of Coordination Chemistry, 2020, 73, 986-1008.	2.2	23
2	Role of co-ligand and solvent on properties of V(IV) oxido complexes with ONO Schiff bases. Journal of Molecular Structure, 2019, 1180, 839-848.	3.6	16
3	Synthesis, structure and properties of V(V) monooxido complex with ONO tridentate Schiff base. Science Technology and Innovation, 2019, 4, 21-29.	0.0	5
4	Cell-based Screening For Identification Of The Novel Vanadium Complexes With Multidirectional Activity Relative To The Cells And The Mechanisms Associated With Metabolic Disorders. Science Technology and Innovation, 2019, 4, 47-54.	0.0	3
5	Synthesis, structure and properties of V(IV) complex with N'-[(E)-(2,3-dihydroxyphenyl)metylidene]-2-phenylacetohydrazide. Science Technology and Innovation, 2019, 4, 1-8.	0.0	2
6	Tridentate hydrazido-hydrazones vanadium complexes. Synthesis, properties and biological activity. Science Technology and Innovation, 2019, 4, 9-20.	0.0	3
7	Synthesis, structure and properties of V(III,IV and V) complexes with ONO Schiff bases. Science Technology and Innovation, 2019, 4, 37-46.	0.0	4
8	The influence of chronic supply of vanadium compounds on organ weights and body mass in animal diabetes model (NZO). Science Technology and Innovation, 2019, 4, 63-72.	0.0	6
9	Potentiation of adipogenesis and insulinomimetic effects of novel vanadium complex (N'-[(E)-(5-bromo-2-oxophenyl)methylidene]-4-methoxybenzohydrazide)oxido(1,10-phenanthroline)vanadium(IV) in 3T3-L1 cells. Science Technology and Innovation, 2019, 4, 55-62.	0.0	1
10	Thermal and long period stability of series of V(V), V(IV) and V(III) complex with Schiff base ligands in solid state. Science Technology and Innovation, 2019, 4, 30-36.	0.0	1
11	Properties, structure and stability of V(IV) hydrazide Schiff base ligand complex. Journal of Molecular Structure, 2018, 1171, 880-887.	3.6	29
12	Bis(4,4′-dimethyl-2,2′-bipyridine)oxidovanadium(IV) Sulfate Dehydrate: Potential Candidate for Controlling Lipid Metabolism?. BioMed Research International, 2017, 2017, 1-5.	1.9	15
13	Assemblies of salen-type oxidovanadium(<scp>iv</scp>) complexes: substituent effects and in vitro protein tyrosine phosphatase inhibition. Dalton Transactions, 2014, 43, 17044-17053.	3.3	22
14	Vanadium Methyl-Bipyridine Organoligand and its Influence on Energy Balance and Organs Mass. Biological Trace Element Research, 2014, 160, 376-382.	3.5	1
15	Influence of Vanadium–organic Ligands Treatment on Selected Metal Levels in Kidneys of STZ Rats. Biological Trace Element Research, 2013, 153, 319-328.	3.5	5
16	Novel vanadyl complexes of acetoacetanilide: Synthesis, characterization and inhibition of proteintyrosine phosphatase. Polyhedron, 2013, 49, 100-104.	2.2	13
17	Quantum mechanical study of the tautomerism and molecular spectra of 2-hydroxy-3-methyl-2-cyclopenten-1-one. Molecular Physics, 2012, 110, 343-351.	1.7	4
18	Spacer-Dependent Structural and Physicochemical Diversity in Copper(II) Complexes with Salicyloyl Hydrazones: A Monomer and Soluble Polymers. Inorganic Chemistry, 2011, 50, 3501-3510.	4.0	23

Ryszard Grybos

#	Article	IF	CITATIONS
19	Effect of alkali metal ion and hydrogen bonds on thermal stability of M[VO(O2)2bpy]·nH2O (M=Li+–Rb+) and Cs[VO(O2)2bpy]·H2O2 complexes. Thermochimica Acta, 2011, 514, 32-36.	2.7	2
20	Role of the alkali metal ion and hydrogen bonds in M[VO(O2)2bpy]·nH2O (M=Li+, Na+, K+ and Rb+) and Cs[VO(O2)2bpy]·H2O2 complexes: The X-ray crystal structures and spectroscopic properties. Polyhedron, 2009, 28, 1429-1436.	2.2	13
21	Structure modification of maltol (3-hydroxy-2-methyl-4H-pyran-4-one) upon cation and anion formation studied by vibrational spectroscopy and quantum-mechanical calculations. Vibrational Spectroscopy, 2007, 43, 344-350.	2.2	10
22	Molecular structures of oxovanadium(IV) complexes with maltol and kojic acid: a quantum mechanical study. Inorganic Chemistry Communication, 2005, 8, 76-78.	3.9	14
23	Vibrational and computational study on maltol (3-hydroxy-2-methyl-4h-pyran-4-one) polymorphism. Vibrational Spectroscopy, 2005, 37, 233-236.	2.2	9
24	Theoretical studies on the aromaticity of selected hydroxypyrones and their cations and anions. Part 1?Aromaticity of heterocyclic pyran rings. Journal of Physical Organic Chemistry, 2005, 18, 250-254.	1.9	18
25	Novel vanadyl complexes with 2-hydroxy-3-methyl-2-cyclopenten-1-one. Transition Metal Chemistry, 2003, 28, 568-571.	1.4	4
26	Determination of the most stable structures of selected hydroxypyrones and their cations and anions. Computational and Theoretical Chemistry, 2003, 639, 87-100.	1.5	31
27	Crystal structure of [VOCl2(H2O)(C6H9O2)2] from powder diffraction data. Journal of Molecular Structure, 2002, 641, 153-157.	3.6	5
28	Effect of oxovanadium(IV) complexes on nondiabetic and streptozotocin-diabetic rats. Archiv Der Pharmazie, 2001, 334, 388-392.	4.1	12
29	Biochemical and Morphological Alterations in Rat Liver Golgi Complexes After Treatment with Bis(maltolato)oxovanadium(IV) [BMOV] orMaltol Alone. Pathology Research and Practice, 2000, 196, 561-568.	2.3	4
30	Electron-transfer kinetics and mechanism of the reduction of octacyanometallates(IV) (M = Mo, W) by hydroxide ion in aqueous solution. Transition Metal Chemistry, 1993, 18, 599-603.	1.4	12
31	1:1 Molybdenum(VI) citric acid complexes. Transition Metal Chemistry, 1991, 16, 495-499.	1.4	39
32	Synthesis and study of oxovanadium(IV) complexes with dithiobis(2,4-pentanedione). Polyhedron, 1990, 9, 1397-1400.	2.2	8
33	Complexation between molybdenum(VI) and citrate: structural characterisation of a tetrameric complex, K4[(MoO2)4O3(cit)2]·6H2O. Journal of the Chemical Society Dalton Transactions, 1990, , 707-711.	1.1	42