Ralf Krahe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11202899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myotonic dystrophy type 1 (DM1) clinical subtypes and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Human Molecular Genetics, 2021, 31, 262-274.	2.9	9
2	Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset. Human Molecular Genetics, 2020, 29, 2496-2507.	2.9	30
3	Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial. PLoS ONE, 2020, 15, e0231000.	2.5	6
4	Title is missing!. , 2020, 15, e0231000.		0
5	Title is missing!. , 2020, 15, e0231000.		0
6	Title is missing!. , 2020, 15, e0231000.		0
7	Title is missing!. , 2020, 15, e0231000.		0
8	Title is missing!. , 2020, 15, e0231000.		0
9	Title is missing!. , 2020, 15, e0231000.		0
10	Consensus-based care recommendations for adults with myotonic dystrophy type 2. Neurology: Clinical Practice, 2019, 9, 343-353.	1.6	41
11	Analysis of mutational dynamics at the DMPK (CTG)n locus identifies saliva as a suitable DNA sample source for genetic analysis in myotonic dystrophy type 1. PLoS ONE, 2019, 14, e0216407.	2.5	5
12	Synergistic and additive effect of retinoic acid in circumventing resistance to p53 restoration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2198-2203.	7.1	9
13	(CCUG)n RNA toxicity in a Drosophila model for myotonic dystrophy type 2 (DM2) activates apoptosis. DMM Disease Models and Mechanisms, 2017, 10, 993-1003.	2.4	8
14	Genome-wide imaging association study implicates functional activity and glial homeostasis of the caudate in smoking addiction. BMC Genomics, 2017, 18, 740.	2.8	7
15	Molecular Diagnosis of Myotonic Dystrophy. Current Protocols in Human Genetics, 2016, 91, 9.29.1-9.29.19.	3.5	4
16	Mesenchymal Deletion of Histone Demethylase <i>NO66</i> in Mice Promotes Bone Formation. Journal of Bone and Mineral Research, 2015, 30, 1608-1617.	2.8	19
17	Mesenchymeâ€specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. FASEB Journal, 2015, 29, 2555-2565.	0.5	9
18	Most expression and splicing changes in myotonic dystrophy type 1 and type 2 skeletal muscle are shared with other muscular dystrophies. Neuromuscular Disorders, 2014, 24, 227-240.	0.6	36

Ralf Krahe

#	Article	IF	CITATIONS
19	Abnormal Splicing of NEDD4 in Myotonic Dystrophy Type 2. American Journal of Pathology, 2014, 184, 2322-2332.	3.8	16
20	The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurology, The, 2012, 11, 891-905.	10.2	390
21	PTBP1â€dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Molecular Carcinogenesis, 2012, 51, 895-906.	2.7	75
22	Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. European Journal of Human Genetics, 2011, 19, 776-782.	2.8	119
23	Joint effects of germ-line TP53 mutation, MDM2 SNP309, and gender on cancer risk in family studies of Li–Fraumeni syndrome. Human Genetics, 2011, 129, 663-673.	3.8	22
24	Sex-specific effect of the TP53 PIN3 polymorphism on cancer risk in a cohort study of TP53 germline mutation carriers. Human Genetics, 2011, 130, 789-794.	3.8	10
25	Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathologica, 2010, 119, 465-479.	7.7	63
26	Altered <i>MEF2</i> isoforms in myotonic dystrophy and other neuromuscular disorders. Muscle and Nerve, 2010, 42, 856-863.	2.2	51
27	Effects of MDM2, MDM4 and TP53 Codon 72 Polymorphisms on Cancer Risk in a Cohort Study of Carriers of TP53 Germline Mutations. PLoS ONE, 2010, 5, e10813.	2.5	37
28	Mutant (CCTG)n Expansion Causes Abnormal Expression of Zinc Finger Protein 9 (ZNF9) in Myotonic Dystrophy Type 2. American Journal of Pathology, 2010, 177, 3025-3036.	3.8	70
29	ZNF9 Activation of IRES-Mediated Translation of the Human ODC mRNA Is Decreased in Myotonic Dystrophy Type 2. PLoS ONE, 2010, 5, e9301.	2.5	27
30	Genome-Wide Hypomethylation in Head and Neck Cancer Is More Pronounced in HPV-Negative Tumors and Is Associated with Genomic Instability. PLoS ONE, 2009, 4, e4941.	2.5	114
31	A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG)·(CAGG) repeat. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3270-3275.	7.1	25
32	Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain, 2009, 132, 2277-2288.	7.6	138
33	Singular Value Decomposition–Based Alternative Splicing Detection. Journal of the American Statistical Association, 2009, 104, 944-953.	3.1	7
34	Expression of RNA CCUG Repeats Dysregulates Translation and Degradation of Proteins in Myotonic Dystrophy 2 Patients. American Journal of Pathology, 2009, 175, 748-762.	3.8	77
35	Molecular signatures of metastasis in head and neck cancer. Head and Neck, 2008, 30, 1273-1283.	2.0	27
36	Myotonic dystrophy type 2 found in two of sixtyâ€ŧhree persons diagnosed as having fibromyalgia. Arthritis and Rheumatism, 2008, 58, 3627-3631.	6.7	37

RALF KRAHE

#	Article	IF	CITATIONS
37	Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays. BMC Genomics, 2008, 9, 216.	2.8	66
38	Myotonic Dystrophy Type 2: Clinical and Genetic Aspects. , 2006, , 131-150.		6
39	Genetically heterogeneous selective intestinal malabsorption of vitamin B ₁₂ : Founder effects, consanguinity, and high clinical awareness explain aggregations in Scandinavia and the Middle East. Human Mutation, 2004, 23, 327-333.	2.5	73
40	Clinical and genetic analysis of a family with PROMM. Journal of Clinical Neuroscience, 2004, 11, 603-605.	1.5	8
41	Confirmation of the Type 2 Myotonic Dystrophy (CCTG) Expansion Mutation in Patients with Proximal Myotonic Myopathy/Proximal Myotonic Dystrophy of Different European Origins: A Single Shared Haplotype Indicates an Ancestral Founder Effect. American Journal of Human Genetics, 2003, 73, 835-848.	6.2	132
42	Expression of human smooth muscle calponin in transgenic mice revealed with a bacterial artificial chromosome. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1793-H1803.	3.2	12
43	Aberrant hypermethylation of the major breakpoint cluster region in 17p11.2 in medulloblastomas but not supratentorial PNETs. Genes Chromosomes and Cancer, 2001, 30, 38-47.	2.8	57
44	Involvement ofBRCA1 andBRCA2 in breast cancer in a western Finnish sub-population. Genetic Epidemiology, 2001, 20, 239-246.	1.3	7
45	Expression and Fine Mapping of Murine Vasoactive Intestinal Peptide Receptor 1. Journal of Molecular Neuroscience, 2001, 17, 311-324.	2.3	15
46	Haplotype analysis in Icelandic and Finnish BRCA2 999del5 breast cancer families. European Journal of Human Genetics, 2001, 9, 773-779.	2.8	23
47	Mutations in KERA, encoding keratocan, cause cornea plana. Nature Genetics, 2000, 25, 91-95.	21.4	148
48	Multiple founder effects and geographical clustering of BRCA1 and BRCA2 families in Finland. European Journal of Human Genetics, 2000, 8, 757-763.	2.8	75
49	Cubilin P1297L mutation associated with hereditary megaloblastic anemia 1 causes impaired recognition of intrinsic factor–vitamin B12 by cubilin. Blood, 2000, 96, 405-409.	1.4	61
50	The Î ³ -Tubulin Gene Family in Humans. Genomics, 2000, 67, 164-170.	2.9	48
51	Cubilin P1297L mutation associated with hereditary megaloblastic anemia 1 causes impaired recognition of intrinsic factor–vitamin B12 by cubilin. Blood, 2000, 96, 405-409.	1.4	20
52	Radiation Hybrid (RH) Mapping of Human Smooth Muscle-Restricted Genes. , 1999, 30, 25-36.		1
53	Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nature Genetics, 1999, 21, 309-313.	21.4	235
54	The intrinsic factor–vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-l receptor facilitating endocytosis of high-density lipoprotein. Nature Medicine, 1999, 5, 656-661.	30.7	248

RALF KRAHE

#	Article	IF	CITATIONS
55	Polymorphic trinucleotide repeat in theMEF2Agene at 15q26 is not expanded in familial cardiomyopathies. Molecular and Cellular Probes, 1997, 11, 55-58.	2.1	3
56	Proximal myotonic dystrophy—a family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: heterogeneity of proximal myotonic syndromes?. Neuromuscular Disorders, 1997, 7, 217-228.	0.6	122
57	Expression, genomic structure and high resolution mapping to 19p13.2 of the human smooth muscle cell calponin gene. Gene, 1997, 197, 215-224.	2.2	24
58	Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nature Genetics, 1997, 15, 393-396.	21.4	207
59	Myotonic dystrophy phenotype without expansion of (CTC)n repeat: An entity distinct from proximal myotonic myopathy (PROMM)?. Journal of Neurology, 1996, 243, 715-721.	3.6	25
60	Effect of Myotonic Dystrophy Trinucleotide Repeat Expansion on DMPK Transcription and Processing. Genomics, 1995, 28, 1-14.	2.9	135
61	Regional Chromosomal Assignments for Four Members of the MADS Domain Transcription Enhancer Factor 2 (MEF2) Gene Family to Human Chromosomes 15q26, 19p12, 5q14, and 1q12–q23. Genomics, 1995, 29, 704-711.	2.9	30