Peter G Barr-Gillespie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11202053/publications.pdf

Version: 2024-02-01

33 papers 1,399 citations

³⁹⁴⁴²¹ 19 h-index 33 g-index

38 all docs 38 docs citations

38 times ranked 1677 citing authors

#	Article	IF	CITATIONS
1	Ca ²⁺ entry through mechanotransduction channels localizes BAIAP2L2 to stereocilia tips. Molecular Biology of the Cell, 2022, 33, mbcE21100491.	2.1	6
2	ANKRD24 organizes TRIOBP to reinforce stereocilia insertion points. Journal of Cell Biology, 2022, 221,	5.2	7
3	Loss of <i>Baiap2l2</i> destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. Journal of Physiology, 2021, 599, 1173-1198.	2.9	28
4	Cy3-ATP labeling of unfixed, permeabilized mouse hair cells. Scientific Reports, 2021, 11, 23855.	3.3	1
5	Mechanotransduction-Dependent Control of Stereocilia Dimensions and Row Identity in Inner Hair Cells. Current Biology, 2020, 30, 442-454.e7.	3.9	50
6	Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle. International Journal of Molecular Sciences, 2020, 21, 324.	4.1	24
7	A cryo-tomography-based volumetric model of the actin core of mouse vestibular hair cell stereocilia lacking plastin 1. Journal of Structural Biology, 2020, 210, 107461.	2.8	14
8	Molecular Composition of Vestibular Hair Bundles. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033209.	6.2	15
9	Electron cryo-tomography of vestibular hair-cell stereocilia. Journal of Structural Biology, 2019, 206, 149-155.	2.8	16
10	Single-cell proteomics reveals changes in expression during hair-cell development. ELife, 2019, 8, .	6.0	80
11	ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. Journal of Neuroscience, 2018, 38, 843-857.	3.6	16
12	TRPV6, TRPM6 and TRPM7 Do Not Contribute to Hair-Cell Mechanotransduction. Frontiers in Cellular Neuroscience, 2018, 12, 41.	3.7	6
13	Transcriptional Dynamics of Hair-Bundle Morphogenesis Revealed with CellTrails. Cell Reports, 2018, 23, 2901-2914.e13.	6.4	40
14	Mass spectrometry quantitation of proteins from small pools of developing auditory and vestibular cells. Scientific Data, 2018, 5, 180128.	5.3	16
15	Heterodimeric capping protein is required for stereocilia length and width regulation. Journal of Cell Biology, 2017, 216, 3861-3881.	5.2	48
16	A Model for Link Pruning to Establish Correctly Polarized and Oriented Tip Links in Hair Bundles. Biophysical Journal, 2017, 113, 1868-1881.	0.5	3
17	Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). ELife, 2017, 6, .	6.0	67
18	Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Scientific Reports, 2016, 6, 27221.	3.3	28

#	Article	IF	CITATIONS
19	Neuroplastin Isoform Np55 Is Expressed in the Stereocilia of Outer Hair Cells and Required for Normal Outer Hair Cell Function. Journal of Neuroscience, 2016, 36, 9201-9216.	3.6	26
20	Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. Journal of Cell Biology, 2016, 215, 467-482.	5.2	54
21	Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nature Communications, 2016, 7, 10833.	12.8	72
22	PDZD7-MYO7A complex identified in enriched stereocilia membranes. ELife, 2016, 5, .	6.0	40
23	Hair-bundle proteomes of avian and mammalian inner-ear utricles. Scientific Data, 2015, 2, 150074.	5.3	14
24	The proteome of mouse vestibular hair bundles over development. Scientific Data, 2015, 2, 150047.	5.3	38
25	A Short Splice Form of Xin-Actin Binding Repeat Containing 2 (XIRP2) Lacking the Xin Repeats Is Required for Maintenance of Stereocilia Morphology and Hearing Function. Journal of Neuroscience, 2015, 35, 1999-2014.	3. 6	38
26	Correlation of Actin Crosslinker and Capper Expression Levels with Stereocilia Growth Phases. Molecular and Cellular Proteomics, 2014, 13, 606-620.	3.8	26
27	Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12907-12912.	7.1	168
28	Accurate Label-Free Protein Quantitation with High- and Low-Resolution Mass Spectrometers. Journal of Proteome Research, 2014, 13, 1034-1044.	3.7	135
29	The Local Forces Acting on the Mechanotransduction Channel in Hair Cell Stereocilia. Biophysical Journal, 2014, 106, 2519-2528.	0.5	24
30	Mechanotransduction: The Elusive Hair Cell Transduction Channel Revealed?. Current Biology, 2013, 23, R887-R890.	3.9	8
31	Molecular architecture of the chick vestibular hair bundle. Nature Neuroscience, 2013, 16, 365-374.	14.8	166
32	Molecular Remodeling of Tip Links Underlies Mechanosensory Regeneration in Auditory Hair Cells. PLoS Biology, 2013, 11, e1001583.	5.6	113
33	Who needs tip links? Backwards transduction by hair cells. Journal of General Physiology, 2013, 142, 481-486.	1.9	8