Minjung Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11201881/publications.pdf

Version: 2024-02-01

37	1,059	18	31
papers	citations	h-index	g-index
39	39	39	1013 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Moisture-tolerant diamine-appended metal–organic framework composites for effective indoor CO2 capture through facile spray coating. Chemical Engineering Journal, 2022, 433, 133856.	6.6	16
2	A robust ethane-selective hypercrosslinked porous organic adsorbent with high ethane capacity. Journal of Materials Chemistry A, 2022, 10, 3579-3584.	5.2	13
3	Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chemical Society Reviews, 2022, 51, 43-56.	18.7	68
4	Double Hypercrosslinked Porous Organic Polymer-Derived Electrocatalysts for a Water Splitting Device. ACS Applied Energy Materials, 2022, 5, 3269-3274.	2.5	6
5	High Gravimetric and Volumetric Ammonia Capacities in Robust Metal–Organic Frameworks Prepared via Double Postsynthetic Modification. Journal of the American Chemical Society, 2022, 144, 9672-9683.	6.6	17
6	Functionalization of Diamine-Appended MOF-Based Adsorbents by Ring Opening of Epoxide: Long-Term Stability and CO ₂ Recyclability under Humid Conditions. Journal of the American Chemical Society, 2022, 144, 10309-10319.	6.6	20
7	Engineered Removal of Trace NH ₃ by Porous Organic Polymers Modified via Sequential Postâ€Sulfonation and Postâ€Alkylation. Advanced Sustainable Systems, 2021, 5, 2000161.	2.7	8
8	Highly selective CO ₂ separation from a CO ₂ 1cosub>2H ₂ mixture using a diamine-appended metal–organic framework. Journal of Materials Chemistry A, 2021, 9, 21424-21428.	5. 2	20
9	Emerging Porous Solid Electrolytes for Hydroxide Ion Transport. Advanced Functional Materials, 2021, 31, 2100083.	7.8	27
10	Highâ€Throughput Discovery of Ni(IN) ₂ for Ethane/Ethylene Separation. Advanced Science, 2021, 8, e2004940.	5.6	50
11	Understanding Correlation Between CO ₂ Insertion Mechanism and Chain Length of Diamine in Metalâ€Organic Framework Adsorbents. ChemSusChem, 2021, 14, 2426-2433.	3.6	6
12	Shaping of a Metal–Organic Framework–Polymer Composite and Its CO ₂ Adsorption Performances from Humid Indoor Air. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25421-25427.	4.0	34
13	A Robust Hydrogen-Bonded Metal–Organic Framework with Enhanced Ethane Uptake and Selectivity. Chemistry of Materials, 2021, 33, 6193-6199.	3.2	39
14	Shaping and silane coating of a diamine-grafted metal-organic framework for improved CO2 capture. Communications Materials, 2021, 2, .	2.9	12
15	Synthesis, Structure, and Proton Conductivities of a Mg(<scp>II</scp>)â€based Coordination Polymer Composed of an Exotic Oxidized Ligand. Bulletin of the Korean Chemical Society, 2021, 42, 322-325.	1.0	12
16	Calix[<i>n</i>]triazolium based turn-on fluorescent sensing ensemble for selective adenosine monophosphate (AMP) detection. Chemical Communications, 2021, 57, 12139-12142.	2.2	6
17	Crown ether-appended calix[2]triazolium[2]arene as a macrocyclic receptor for the recognition of the H2PO4â°anion. Chemical Communications, 2020, 56, 1038-1041.	2.2	9
18	Pt ²⁺ -Exchanged ZIF-8 nanocube as a solid-state precursor for L1 ₀ -PtZn intermetallic nanoparticles embedded in a hollow carbon nanocage. Nanoscale, 2020, 12, 1118-1127.	2.8	10

#	Article	IF	CITATIONS
19	Cost-effective porous-organic-polymer-based electrolyte membranes with superprotonic conductivity and low activation energy. Journal of Materials Chemistry A, 2020, 8, 1147-1153.	5.2	28
20	Emerging Porous Materials and Their Composites for NH ₃ Gas Removal. Advanced Science, 2020, 7, 2002142.	5.6	58
21	Metal–Organic Framework Adsorbent for Practical Capture of Trace Carbon Dioxide. ACS Applied Materials & Dioxide. ACS Applied Mat	4.0	21
22	High Ammonia Uptake of a Metal–Organic Framework Adsorbent in a Wide Pressure Range. Angewandte Chemie - International Edition, 2020, 59, 22531-22536.	7.2	54
23	Innenrýcktitelbild: High Ammonia Uptake of a Metal–Organic Framework Adsorbent in a Wide Pressure Range (Angew. Chem. 50/2020). Angewandte Chemie, 2020, 132, 22991-22991.	1.6	0
24	High Ammonia Uptake of a Metal–Organic Framework Adsorbent in a Wide Pressure Range. Angewandte Chemie, 2020, 132, 22720-22725.	1.6	7
25	Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. Journal of Materials Chemistry A, 2020, 8, 7474-7494.	5.2	122
26	A Hydrogenâ€Bonded Organic Framework (HOF) with Typeâ€IV NH ₃ Adsorption Behavior. Angewandte Chemie - International Edition, 2019, 58, 16152-16155.	7.2	77
27	Control of the Metal Composition in Bimetallic Mg/Zn(dobpdc) Constructed from a One-Dimensional Zn-Based Template. Inorganic Chemistry, 2019, 58, 14107-14111.	1.9	10
28	A Hydrogenâ€Bonded Organic Framework (HOF) with Type IV NH 3 Adsorption Behavior. Angewandte Chemie, 2019, 131, 16298-16301.	1.6	14
29	A diamine-grafted metal–organic framework with outstanding CO ₂ capture properties and a facile coating approach for imparting exceptional moisture stability. Journal of Materials Chemistry A, 2019, 7, 8177-8183.	5.2	52
30	Fine-tuning of wettability in a single metal–organic framework <i>via</i> postcoordination modification and its reduced graphene oxide aerogel for oil–water separation. Chemical Science, 2019, 10, 2663-2669.	3.7	48
31	Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide separation. Dalton Transactions, 2019, 48, 2263-2270.	1.6	50
32	Revealing an unusual temperature-dependent CO ₂ adsorption trend and selective CO ₂ uptake over water vapors in a polyamine-appended metal–organic framework. Materials Chemistry Frontiers, 2019, 3, 2759-2767.	3.2	19
33	Cyclic Structural Transformations from Crystalline to Crystalline to Amorphous Phases and Magnetic Properties of a Mn(II)-Based Metal–Organic Framework. Crystal Growth and Design, 2018, 18, 3360-3365.	1.4	9
34	Diamineâ€Functionalization of a Metal–Organic Framework Adsorbent for Superb Carbon Dioxide Adsorption and Desorption Properties. ChemSusChem, 2018, 11, 1694-1707.	3.6	40
35	Reversible crystal-to-amorphous structural transformations and magnetic variations in single end-on azide-bridged $M < \sup I < \sup (M = Mn, Ni)$ coordination polymers. Dalton Transactions, 2018, 47, 845-851.	1.6	24
36	Discriminative Molecular Detection Based on Competitive Absorption by a Luminescent Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40372-40377.	4.0	16

MINJUNG KANG

#	Article	IF	CITATIONS
37	PDMS-coated hypercrosslinked porous organic polymers modified <i>via</i> double postsynthetic acidifications for ammonia capture. Chemical Science, 2018, 9, 6871-6877.	3.7	36