Timothy D Mchugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11201852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 2020, 91, 264-266.	3.3	2,658
2	Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. New England Journal of Medicine, 2020, 382, 893-902.	27.0	554
3	Four-Month Moxifloxacin-Based Regimens for Drug-Sensitive Tuberculosis. New England Journal of Medicine, 2014, 371, 1577-1587.	27.0	551
4	Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infectious Diseases, The, 2013, 13, 349-361.	9.1	385
5	High-Dose Rifapentine with Moxifloxacin for Pulmonary Tuberculosis. New England Journal of Medicine, 2014, 371, 1599-1608.	27.0	383
6	New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infectious Diseases, The, 2014, 14, 327-340.	9.1	302
7	Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infectious Diseases, The, 2018, 18, e183-e198.	9.1	281
8	A Dose-Ranging Trial to Optimize the Dose of Rifampin in the Treatment of Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1058-1065.	5.6	260
9	Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infectious Diseases, The, 2018, 18, e199-e210.	9.1	244
10	Drug-resistant tuberculosis: time for visionary political leadership. Lancet Infectious Diseases, The, 2013, 13, 529-539.	9.1	243
11	Rapid Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates Directly from Clinical Samples. Journal of Clinical Microbiology, 2015, 53, 2230-2237.	3.9	242
12	Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax, 2012, 67, 1075-1080.	5.6	193
13	Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respiratory Medicine,the, 2013, 1, 786-792.	10.7	184
14	Smartphone-enabled video-observed versus directly observed treatment for tuberculosis: a multicentre, analyst-blinded, randomised, controlled superiority trial. Lancet, The, 2019, 393, 1216-1224.	13.7	156
15	Tuberculosis Diagnostics and Biomarkers: Needs, Challenges, Recent Advances, and Opportunities. Journal of Infectious Diseases, 2012, 205, S147-S158.	4.0	154
16	Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respiratory Medicine,the, 2013, 1, 462-470.	10.7	151
17	Is Africa prepared for tackling the COVID-19 (SARS-CoV-2) epidemic. Lessons from past outbreaks, ongoing pan-African public health efforts, and implications for the future. International Journal of Infectious Diseases, 2020, 93, 233-236.	3.3	150
18	The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infectious Diseases, The, 2016, 16, 227-238.	9.1	149

#	Article	IF	CITATIONS
19	Drug-Resistant Tuberculosis—Current Dilemmas, Unanswered Questions, Challenges, and Priority Needs. Journal of Infectious Diseases, 2012, 205, S228-S240.	4.0	140
20	Monkeypox — Enhancing public health preparedness for an emerging lethal human zoonotic epidemic threat in the wake of the smallpox post-eradication era. International Journal of Infectious Diseases, 2019, 78, 78-84.	3.3	133
21	Direct Whole-Genome Sequencing of Sputum Accurately Identifies Drug-Resistant Mycobacterium tuberculosis Faster than MGIT Culture Sequencing. Journal of Clinical Microbiology, 2018, 56, .	3.9	131
22	Towards host-directed therapies for tuberculosis. Nature Reviews Drug Discovery, 2015, 14, 511-512.	46.4	110
23	COVID-19—Zoonosis or Emerging Infectious Disease?. Frontiers in Public Health, 2020, 8, 596944.	2.7	104
24	Molecular Bacterial Load Assay, a Culture-Free Biomarker for Rapid and Accurate Quantification of Sputum Mycobacterium tuberculosis Bacillary Load during Treatment. Journal of Clinical Microbiology, 2011, 49, 3905-3911.	3.9	97
25	Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. Journal of Antimicrobial Chemotherapy, 2005, 56, 344-348.	3.0	96
26	Blood and sputum eosinophils in COPD; relationship with bacterial load. Respiratory Research, 2017, 18, 88.	3.6	94
27	Highly Reproducible Absolute Quantification of <i>Mycobacterium tuberculosis</i> Complex by Digital PCR. Analytical Chemistry, 2015, 87, 3706-3713.	6.5	87
28	Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice. Journal of Medical Microbiology, 2012, 61, 483-488.	1.8	78
29	Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open, 2013, 3, e002672.	1.9	74
30	A Practical Guide to Measuring Mutation Rates in Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2008, 52, 1209-1214.	3.2	66
31	Biomarkers of treatment response in clinical trials of novel antituberculosis agents. Lancet Infectious Diseases, The, 2007, 7, 481-490.	9.1	65
32	Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs. British Medical Bulletin, 2016, 118, 138-148.	6.9	63
33	The Molecular Bacterial Load Assay Replaces Solid Culture for Measuring Early Bactericidal Response to Antituberculosis Treatment. Journal of Clinical Microbiology, 2014, 52, 3064-3067.	3.9	62
34	Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial. Thorax, 2015, 70, 930-938.	5.6	61
35	Use of whole-genome sequencing to distinguish relapse from reinfection in a completed tuberculosis clinical trial. BMC Medicine, 2017, 15, 71.	5.5	57
36	Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Medicine, 2016, 14, 68.	5.5	55

#	Article	IF	CITATIONS
37	Analysis of rpoB and pncA mutations in the published literature: an insight into the role of oxidative stress in Mycobacterium tuberculosis evolution?. Journal of Antimicrobial Chemotherapy, 2005, 55, 674-679.	3.0	54
38	An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 2012, 39, 124-129.	2.5	52
39	Design and Synthesis of 1-((1,5-Bis(4-chlorophenyl)-2-methyl-1 <i>H</i> -pyrrol-3-yl)methyl)-4-methylpiperazine (BM212) and <i>N</i> -Adamantan-2-yl- <i>N</i> â€2-((<i>E</i>)-3,7-dimethylocta-2,6-dienyl)ethane-1,2-diamine (SQ109) Pyrrole Hybrid Derivatives: Discovery of Potent Antitubercular Agents Effective against	6.4	51
40	A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Nucleic Acid Amplification Tests for Tuberculous Meningitis. Journal of Clinical Microbiology, 2019, 57, .	3.9	50
41	Li Wenliang, a face to the frontline healthcare worker. The first doctor to notify the emergence of the SARS-CoV-2, (COVID-19), outbreak. International Journal of Infectious Diseases, 2020, 93, 205-207.	3.3	49
42	Identification of 2-Aminothiazole-4-Carboxylate Derivatives Active against Mycobacterium tuberculosis H37Rv and the β-Ketoacyl-ACP Synthase mtFabH. PLoS ONE, 2009, 4, e5617.	2.5	47
43	Liver toxicity associated with tuberculosis chemotherapy in the REMoxTB study. BMC Medicine, 2018, 16, 46.	5.5	46
44	2-Hydroxy-substituted cinnamic acids and acetanilides are selective growth inhibitors of Mycobacterium tuberculosis. MedChemComm, 2014, 5, 47-50.	3.4	43
45	The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis. BMC Infectious Diseases, 2016, 16, 366.	2.9	41
46	Rapid identification of a Mycobacterium tuberculosis full genetic drug resistance profile through whole genome sequencing directly from sputum. International Journal of Infectious Diseases, 2017, 62, 44-46.	3.3	40
47	Methods to Determine Fitness in Bacteria. Methods in Molecular Biology, 2010, 642, 113-121.	0.9	37
48	Standardization of Nucleic Acid Tests for Clinical Measurements of Bacteria and Viruses. Journal of Clinical Microbiology, 2015, 53, 2008-2014.	3.9	36
49	Multiple Drug-ResistantMycobacterium tuberculosis:Evidence for Changing Fitness Following Passage Through Human Hosts. Microbial Drug Resistance, 2002, 8, 273-279.	2.0	35
50	Early bactericidal activity of a moxifloxacin and isoniazid combination in smear-positive pulmonary tuberculosis. Journal of Antimicrobial Chemotherapy, 2005, 56, 1169-1171.	3.0	34
51	Ancient and recent differences in the intrinsic susceptibility of <i>Mycobacterium tuberculosis</i> complex to pretomanid. Journal of Antimicrobial Chemotherapy, 2022, 77, 1685-1693.	3.0	34
52	Tuberculosis: amplification-based clinical diagnostic techniques. International Journal of Biochemistry and Cell Biology, 2003, 35, 1407-1412.	2.8	33
53	The biological cost of antimicrobial resistance. Trends in Microbiology, 1997, 5, 337-339.	7.7	32
54	Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315. PLoS ONE, 2015, 10, e0138253.	2.5	29

#	Article	IF	CITATIONS
55	Origins and properties of Mycobacterium tuberculosis isolates in London. Journal of Medical Microbiology, 2005, 54, 575-582.	1.8	27
56	TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II–III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis. Trials, 2022, 23, .	1.6	22
57	New drugs to treat difficult tuberculous and nontuberculous mycobacterial pulmonary disease. Current Opinion in Pulmonary Medicine, 2019, 25, 271-280.	2.6	21
58	Improving the Tuberculosis Drug Development Pipeline. Chemical Biology and Drug Design, 2015, 86, 951-960.	3.2	20
59	Airway microbiome in adult survivors of extremely preterm birth: the EPICure study. European Respiratory Journal, 2019, 53, 1801225.	6.7	20
60	Enhanced heterogeneity of rpoB in Mycobacterium tuberculosis found at low pH. Journal of Antimicrobial Chemotherapy, 2009, 63, 1118-1120.	3.0	16
61	Genetic variation in Mycobacterium tuberculosis isolates from a London outbreak associated with isoniazid resistance. BMC Medicine, 2016, 14, 117.	5.5	16
62	Assessment of treatment response by colony forming units, time to culture positivity and the molecular bacterial load assay compared in a mouse tuberculosis model. Tuberculosis, 2017, 105, 113-118.	1.9	16
63	Toxicity associated with tuberculosis chemotherapy in the REMoxTB study. BMC Infectious Diseases, 2018, 18, 317.	2.9	16
64	Carprofen elicits pleiotropic mechanisms of bactericidal action with the potential to reverse antimicrobial drug resistance in tuberculosis. Journal of Antimicrobial Chemotherapy, 2020, 75, 3194-3201.	3.0	16
65	Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR. Frontiers in Immunology, 2020, 11, 612564.	4.8	16
66	Strategies and Challenges Involved in the Discovery of New Chemical Entities During Early-Stage Tuberculosis Drug Discovery. Journal of Infectious Diseases, 2012, 205, S258-S264.	4.0	15
67	Evaluation of a Short, On-Plate Formic Acid Extraction Method for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Identification of Clinically Relevant Yeast Isolates. Journal of Clinical Microbiology, 2014, 52, 1253-1255.	3.9	15
68	Fluoroquinolones and isoniazid-resistant tuberculosis: implications for the 2018 WHO guidance. European Respiratory Journal, 2019, 54, 1900982.	6.7	14
69	Spot sputum samples are at least as good as early morning samples for identifying Mycobacterium tuberculosis. BMC Medicine, 2017, 15, 192.	5.5	12
70	A comparison of liquid and solid culture for determining relapse and durable cure in phase III TB trials for new regimens. BMC Medicine, 2017, 15, 207.	5.5	12
71	Reducing the risk of tuberculosis transmission for HCWs in high incidence settings. Antimicrobial Resistance and Infection Control, 2021, 10, 106.	4.1	12
72	Direct detection of heteroresistance in Mycobacterium tuberculosis using molecular techniques. Journal of Medical Microbiology, 2006, 55, 1157-1158.	1.8	10

#	Article	IF	CITATIONS
73	Genomic Investigations Unmask Mycoplasma amphoriforme, a New Respiratory Pathogen. Clinical Infectious Diseases, 2015, 60, 381-388.	5.8	10
74	Uniting to end the TB epidemic: advances in disease control from prevention to better diagnosis and treatment. BMC Medicine, 2016, 14, 47.	5.5	10
75	Improving the Potency of <i>N</i> -Aryl-2,5-dimethylpyrroles against Multidrug-Resistant and Intracellular Mycobacteria. ACS Medicinal Chemistry Letters, 2020, 11, 638-644.	2.8	9
76	Airway bacteria and respiratory symptoms are common in ambulatory HIV-positive UK adults. European Respiratory Journal, 2015, 46, 1208-1211.	6.7	8
77	Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics, 2021, 10, 1515.	3.7	8
78	A Step toward an Optimized Rifampin Dose Completed. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 525-526.	5.6	7
79	Pediatric tuberculosis-human immunodeficiency virus co-infection in the United Kingdom highlights the need for better therapy monitoring tools: a case report. Journal of Medical Case Reports, 2017, 11, 52.	0.8	4
80	Enrichment of the airway microbiome in people living with HIV with potential pathogenic bacteria despite antiretroviral therapy. EClinicalMedicine, 2020, 24, 100427.	7.1	4
81	Management and control of tuberculosis control in socially complex groups: a research programme including three RCTs. Programme Grants for Applied Research, 2020, 8, 1-76.	1.0	3
82	Pre-Clinical Tools for Predicting Drug Efficacy in Treatment of Tuberculosis. Microorganisms, 2022, 10, 514.	3.6	3
83	Culture-Free Enumeration of Mycobacterium tuberculosis in Mouse Tissues Using the Molecular Bacterial Load Assay for Preclinical Drug Development. Microorganisms, 2022, 10, 460.	3.6	3
84	Commemorating World Tuberculosis Day 2015. International Journal of Infectious Diseases, 2015, 32, 1-4.	3.3	2
85	World TB Day 2016: an interview with leading experts in tuberculosis research. BMC Medicine, 2016, 14, 55.	5.5	2
86	Profiling and identification of novel rpoB mutations in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from Pakistan. Journal of Infection and Chemotherapy, 2021, 27, 1578-1583.	1.7	2
87	Rifamycins: do not throw the baby out with the bathwater. Is rifampicin still an effective anti-tuberculosis drug?. Future Medicinal Chemistry, 2021, 13, 2129-2131.	2.3	2
88	Application of SSCP to Identification of Resistance Mutations. , 2001, 48, 31-37.		1
89	World TB Day 2014: Reach the three million: a TB test, treatment and cure for all. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 119-120.	1.8	0