Stefan Zoller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11201446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bayes or Bootstrap? A Simulation Study Comparing the Performance of Bayesian Markov Chain Monte Carlo Sampling and Bootstrapping in Assessing Phylogenetic Confidence. Molecular Biology and Evolution, 2003, 20, 255-266.	3.5	971
2	Integrating Ambiguously Aligned Regions of DNA Sequences in Phylogenetic Analyses Without Violating Positional Homology. Systematic Biology, 2000, 49, 628-651.	2.7	334
3	Signatures of local adaptation in candidate genes of oaks (<i>Quercus</i> spp.) with respect to present and future climatic conditions. Molecular Ecology, 2016, 25, 5907-5924.	2.0	141
4	Population genomic footprints of selection and associations with climate in natural populations of <i>Arabidopsis halleri</i> from the Alps. Molecular Ecology, 2013, 22, 5594-5607.	2.0	113
5	Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Molecular Phylogenetics and Evolution, 2003, 29, 629-640.	1.2	91
6	Accumulation of Mutational Load at the Edges of a Species Range. Molecular Biology and Evolution, 2018, 35, 781-791.	3.5	86
7	Validation of SNP Allele Frequencies Determined by Pooled Next-Generation Sequencing in Natural Populations of a Non-Model Plant Species. PLoS ONE, 2013, 8, e80422.	1.1	81
8	Walking the thin line… ten years later: the dilemma of above- versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity, 2018, 89, 267-292.	4.7	73
9	Rust fungi on Annonaceae II: the genus <i>Dasyspora</i> Berk. & M.A. Curtis. Mycologia, 2012, 104, 659-681.	0.8	71
10	New approach to an old problem: Incorporating signal from gap-rich regions of ITS and rDNA large subunit into phylogenetic analyses to resolve the <i>Peltigera canina</i> species complex. Mycologia, 2003, 95, 1181-1203.	0.8	62
11	Cysteine-rich angiogenic inducer 61 (Cyr61): a novel soluble biomarker of acute myocardial injury improves risk stratification after acute coronary syndromes. European Heart Journal, 2017, 38, 3493-3502.	1.0	46
12	Genomic vulnerability to rapid climate warming in a tree species with a long generation time. Global Change Biology, 2021, 27, 1181-1195.	4.2	46
13	Distinct evolutionary strategies in the GGPPS family from plants. Frontiers in Plant Science, 2014, 5, 230.	1.7	45
14	Phylogenetic study of <i>Fulgensia</i> and allied <i>Caloplaca</i> and <i>Xanthoria</i> species (Teloschistaceae, lichenâ€forming ascomycota). American Journal of Botany, 2003, 90, 1095-1103.	0.8	42
15	Systematics of the genus <i>Chaetosphaeria</i> and its allied genera: morphological and phylogenetic diversity in north temperate and neotropical taxa. Mycologia, 2006, 98, 121-130.	0.8	36
16	Circulating FABP4 Is a Prognostic Biomarker in Patients With Acute Coronary Syndrome but Not in Asymptomatic Individuals. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1872-1879.	1.1	36
17	Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils. Scientific Reports, 2018, 8, 16085.	1.6	32
18	Empirical Analysis of the Most Relevant Parameters of Codon Substitution Models. Journal of Molecular Evolution, 2010, 70, 605-612.	0.8	29

STEFAN ZOLLER

#	Article	IF	CITATIONS
19	A de novo chromosomeâ€level genome assembly of <i>Coregonus</i> sp. " <i>Balchen</i> â€e One representative of the Swiss Alpine whitefish radiation. Molecular Ecology Resources, 2020, 20, 1093-1109.	2.2	29
20	Genomewide signatures of selection in <i>Epichloë</i> reveal candidate genes for host specialization. Molecular Ecology, 2018, 27, 3070-3086.	2.0	28
21	Improving Phylogenetic Inference with a Semiempirical Amino Acid Substitution Model. Molecular Biology and Evolution, 2013, 30, 469-479.	3.5	27
22	Using transcriptome sequencing and pooled exome capture to study local adaptation in the gigaâ€genome of <i>Pinus cembra</i> . Molecular Ecology Resources, 2019, 19, 536-551.	2.2	23
23	Disentangling the effects of geographic peripherality and habitat suitability on neutral and adaptive genetic variation in Swiss stone pine. Molecular Ecology, 2020, 29, 1972-1989.	2.0	20
24	New Approach to an Old Problem: Incorporating Signal from Gap-Rich Regions of ITS and rDNA Large Subunit into Phylogenetic Analyses to Resolve the Peltigera canina Species Complex. Mycologia, 2003, 95, 1181.	0.8	19
25	TRAL: tandem repeat annotation library. Bioinformatics, 2015, 31, 3051-3053.	1.8	17
26	Genomic signatures of convergent adaptation to Alpine environments in three Brassicaceae species. Molecular Ecology, 2020, 29, 4350-4365.	2.0	17
27	Genetic Evidence for Reproductive Isolation Among Sympatric Epichloë Endophytes as Inferred from Newly Developed Microsatellite Markers. Microbial Ecology, 2015, 70, 51-60.	1.4	15
28	Maximum-Likelihood Tree Estimation Using Codon Substitution Models with Multiple Partitions. Molecular Biology and Evolution, 2015, 32, 2208-2216.	3.5	14
29	A New Semiempirical Codon Substitution Model Based on Principal Component Analysis of Mammalian Sequences. Molecular Biology and Evolution, 2012, 29, 271-277.	3.5	10
30	Gene Duplication and Gain in the Trematode <i>Atriophallophorus winterbourni</i> Contributes to Adaptation to Parasitism. Genome Biology and Evolution, 2021, 13, .	1.1	7