
## **Armand Masion**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11200903/publications.pdf Version: 2024-02-01



ADMAND MASION

| #  | Article                                                                                                                                                                                                                                                        | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. Nano Today, 2021, 37, 101065.                                                                                   | 6.2 | 7         |
| 2  | Robustness of Indoor Aquatic Mesocosm Experimentations and Data Reusability to Assess the Environmental Risks of Nanomaterials. Frontiers in Environmental Science, 2021, 9, .                                                                                 | 1.5 | 4         |
| 3  | The SERENADE project – A step forward in the Safe by Design process of nanomaterials: Moving towards a product-oriented approach. Nano Today, 2021, 39, 101238.                                                                                                | 6.2 | 1         |
| 4  | Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. Environmental Science & amp; Technology, 2021, 55, 16270-16282.                                                                                        | 4.6 | 10        |
| 5  | The necessity of investigating a freshwater-marine continuum using a mesocosm approach in<br>nanosafety: The case study of TiO2 MNM-based photocatalytic cement. NanoImpact, 2020, 20, 100254.                                                                 | 2.4 | 5         |
| 6  | Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 2020, 20, 100267.                                                                                                                                                                 | 2.4 | 22        |
| 7  | Optimizing the dispersion of nanoparticulate TiO2-based UV filters in a non-polar medium used in sunscreen formulations – The roles of surfactants and particle coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124792. | 2.3 | 14        |
| 8  | Comparison of Nanomaterials for Delivery of Double-Stranded RNA inCaenorhabditis elegans. Journal of Agricultural and Food Chemistry, 2020, 68, 7926-7934.                                                                                                     | 2.4 | 10        |
| 9  | Aqueous aging of a silica coated TiO <sub>2</sub> UV filter used in sunscreens: investigations at the molecular scale with dynamic nuclear polarization NMR. RSC Advances, 2020, 10, 8266-8274.                                                                | 1.7 | 13        |
| 10 | Multivariate analysis of the exposure and hazard of ceria nanomaterials in indoor aquatic mesocosms. Environmental Science: Nano, 2020, 7, 1661-1669.                                                                                                          | 2.2 | 4         |
| 11 | Monitoring the Environmental Aging of Nanomaterials: An Opportunity for Mesocosm Testing?.<br>Materials, 2019, 12, 2447.                                                                                                                                       | 1.3 | 10        |
| 12 | Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials. NanoImpact, 2019, 13, 66-69.                                                                                                  | 2.4 | 26        |
| 13 | Environmental exposure of a simulated pond ecosystem to a CuO nanoparticle-based wood stain throughout its life cycle. Environmental Science: Nano, 2018, 5, 2579-2589.                                                                                        | 2.2 | 19        |
| 14 | Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation. Environmental Pollution, 2018, 241, 182-193.                                                                                         | 3.7 | 19        |
| 15 | When the carbon being dated is not what you think it is: Insights from phytolith carbon research.<br>Quaternary Science Reviews, 2018, 197, 162-174.                                                                                                           | 1.4 | 11        |
| 16 | Alignment of Ge-imogolite nanotubes in isomalt with tunable inter-tube distances. RSC Advances, 2017,<br>7, 21323-21327.                                                                                                                                       | 1.7 | 6         |
| 17 | Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles. Scientific Reports, 2017, 7, 3430.                                                                                           | 1.6 | 4         |
| 18 | Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of <i>Arabidopsis thaliana</i> by<br>X-ray Computed Nanotomography and Hyperspectral Imaging. Environmental Science &<br>Technology, 2017, 51, 8682-8691.                                  | 4.6 | 152       |

ARMAND MASION

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Remote Biodegradation of Ge–Imogolite Nanotubes Controlled by the Iron Homeostasis of<br><i>Pseudomonas brassicacearum</i> . Environmental Science & Technology, 2016, 50, 7791-7798.               | 4.6 | 8         |
| 20 | Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence. Metallomics, 2016, 8, 366-376.              | 1.0 | 8         |
| 21 | Fate of Manufactured Nanoparticles in Aqueous Environment. , 2016, , 1153-1168.                                                                                                                     |     | Ο         |
| 22 | Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus - Geoscience, 2015, 347, 35-42.                      | 0.4 | 21        |
| 23 | Long-term aging of a CeO2 based nanocomposite used for wood protection. Environmental Pollution, 2014, 188, 1-7.                                                                                    | 3.7 | 59        |
| 24 | Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Research, 2014, 51, 64-72.                                                                                 | 5.3 | 96        |
| 25 | Transformation of Pristine and Citrate-Functionalized CeO <sub>2</sub> Nanoparticles in a<br>Laboratory-Scale Activated Sludge Reactor. Environmental Science & Technology, 2014, 48,<br>7289-7296. | 4.6 | 61        |
| 26 | Isolated cell walls exhibit cation binding properties distinct from those of plant roots. Plant and Soil, 2014, 381, 367-379.                                                                       | 1.8 | 24        |
| 27 | An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Scientific Reports, 2014, 4, 5608.                                      | 1.6 | 45        |
| 28 | Fate of Manufactured Nanoparticles in Aqueous Environment. , 2014, , 1-17.                                                                                                                          |     | 0         |
| 29 | Characterisation of organic matter from organo-mineral complexes in an Andosol from Reunion<br>Island. Journal of Analytical and Applied Pyrolysis, 2013, 99, 92-100.                               | 2.6 | 26        |
| 30 | Environmental fate of nanoparticles: physical chemical and biological aspects – a few snapshots.<br>International Journal of Nanotechnology, 2012, 9, 167.                                          | 0.1 | 2         |
| 31 | Influence of the Length of Imogolite-Like Nanotubes on Their Cytotoxicity and Genotoxicity toward<br>Human Dermal Cells. Chemical Research in Toxicology, 2012, 25, 2513-2522.                      | 1.7 | 22        |
| 32 | Early-stage precipitation kinetics of zinc sulfide nanoclusters forming in the presence of cysteine.<br>Chemical Geology, 2012, 329, 10-17.                                                         | 1.4 | 20        |
| 33 | Is There a Trojan-Horse Effect during Magnetic Nanoparticles and Metalloid Cocontamination of<br>Human Dermal Fibroblasts?. Environmental Science & Technology, 2012, 46, 10789-10796.              | 4.6 | 13        |
| 34 | Analysis of engineered nanomaterials in complex matrices (environment and biota): General<br>considerations and conceptual case studies. Environmental Toxicology and Chemistry, 2012, 31, 32-49.   | 2.2 | 390       |
| 35 | Growth kinetic of single and double-walled aluminogermanate imogolite-like nanotubes: an<br>experimental and modeling approach. Physical Chemistry Chemical Physics, 2011, 13, 2682-2689.           | 1.3 | 47        |
| 36 | Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus - Geoscience, 2011, 343, 168-176.                 | 0.4 | 43        |

ARMAND MASION

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective:<br>Structures and quantities. Environmental Pollution, 2011, 159, 1543-1550.                                      | 3.7 | 166       |
| 38 | Surface Reactivity of Manufactured Nanoparticles. , 2011, , 269-290.                                                                                                                                                     |     | 5         |
| 39 | Life Cycle Models and Risk Assessment. , 2011, , 397-417.                                                                                                                                                                |     | Ο         |
| 40 | Structural Degradation at the Surface of a TiO <sub>2</sub> -Based Nanomaterial Used in Cosmetics.<br>Environmental Science & Technology, 2010, 44, 2689-2694.                                                           | 4.6 | 193       |
| 41 | Investigation of Copper Speciation in Pig Slurry by a Multitechnique Approach. Environmental Science<br>& Technology, 2010, 44, 6926-6932.                                                                               | 4.6 | 50        |
| 42 | Evidence of Double-Walled Alâ^'Ge Imogolite-Like Nanotubes. A Cryo-TEM and SAXS Investigation.<br>Journal of the American Chemical Society, 2010, 132, 1208-1209.                                                        | 6.6 | 56        |
| 43 | Impact of pig slurry and green waste compost application on heavy metal exchangeable fractions in tropical soils. Geoderma, 2010, 155, 390-400.                                                                          | 2.3 | 34        |
| 44 | Spectroscopic characterization of organic matter of a soil and vinasse mixture during aerobic or anaerobic incubation. Waste Management, 2009, 29, 1929-1935.                                                            | 3.7 | 39        |
| 45 | Synthesis of Imogolite Fibers from Decimolar Concentration at Low Temperature and Ambient<br>Pressure: A Promising Route for Inexpensive Nanotubes. Journal of the American Chemical Society,<br>2009, 131, 17080-17081. | 6.6 | 58        |
| 46 | Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion. Geochimica Et<br>Cosmochimica Acta, 2009, 73, 4750-4760.                                                                                | 1.6 | 28        |
| 47 | CeO <sub>2</sub> nanoparticles induce DNA damage towards human dermal fibroblasts <i>in vitro</i> .<br>Nanotoxicology, 2009, 3, 161-171.                                                                                 | 1.6 | 179       |
| 48 | Hydration and Dispersion of C <sub>60</sub> in Aqueous Systems: The Nature of Waterâ^'Fullerene<br>Interactions. Langmuir, 2009, 25, 11232-11235.                                                                        | 1.6 | 103       |
| 49 | Enhanced Adsorption of Arsenic onto Maghemites Nanoparticles:  As(III) as a Probe of the Surface<br>Structure and Heterogeneity. Langmuir, 2008, 24, 3215-3222.                                                          | 1.6 | 185       |
| 50 | Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward<br><i>Escherichia coli</i> . Environmental Science & Technology, 2008, 42, 6730-6735.                                         | 4.6 | 487       |
| 51 | Synthesis of Large Quantities of Single-Walled Aluminogermanate Nanotube. Journal of the American<br>Chemical Society, 2008, 130, 5862-5863.                                                                             | 6.6 | 72        |
| 52 | New Combination of EXAFS Spectroscopy and Density Fractionation for the Speciation of Chromium within an Andosol. Environmental Science & amp; Technology, 2006, 40, 7602-7608.                                          | 4.6 | 47        |
| 53 | Hydrolysis of Iron(II) Chloride under Anoxic Conditions and Influence of SiO4Ligands. Langmuir, 2002, 18, 4292-4299.                                                                                                     | 1.6 | 19        |
| 54 | Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4Ligands. 3.<br>Semilocal Scale Structure of the Aggregates. Langmuir, 2001, 17, 4753-4757.                                      | 1.6 | 21        |

ARMAND MASION

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Speciation and Crystal Chemistry of Fe(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 2.<br>Characterization of Siâ^'Fe Aggregates by FTIR and 29Si Solid-State NMR. Langmuir, 2001, 17, 1399-1405. | 1.6 | 77        |
| 56 | X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate<br>Hydrates. 2. Zinc. Langmuir, 2001, 17, 3658-3665.                                                      | 1.6 | 55        |
| 57 | Crystal Chemistry of Colloids Obtained by Hydrolysis of Fe(III) in the Presence of SiO4 Ligands.<br>Materials Research Society Symposia Proceedings, 2000, 658, 3361.                                          | 0.1 | 1         |
| 58 | Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4Ligands. 1. An<br>Fe K-Edge EXAFS Study. Langmuir, 2000, 16, 4726-4731.                                               | 1.6 | 93        |
| 59 | X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate<br>Hydrates: 1. Case of Lead. Langmuir, 2000, 16, 9900-9906.                                              | 1.6 | 55        |
| 60 | Coagulation-Flocculation of Natural Organic Matter with Al Salts:Â Speciation and Structure of the Aggregates. Environmental Science & Technology, 2000, 34, 3242-3246.                                        | 4.6 | 95        |
| 61 | Removal of Natural Organic Matter by Coagulation-Flocculation:Â A Pyrolysis-GC-MS Study.<br>Environmental Science & Technology, 1999, 33, 3027-3032.                                                           | 4.6 | 78        |
| 62 | Iron speciation in natural organic matter colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 11-19.                                                                        | 2.3 | 57        |
| 63 | Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4Ions. 4. Structure of the Aggregates. Langmuir, 1997, 13, 3886-3889.                                                              | 1.6 | 18        |
| 64 | Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4Ions. 2. P K-Edge EXAFS<br>Study. Langmuir, 1997, 13, 1827-1834.                                                                     | 1.6 | 94        |
| 65 | Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4Ions. 3. Speciation of Fe by Small Angle X-ray Scattering. Langmuir, 1997, 13, 3882-3885.                                         | 1.6 | 24        |
| 66 | Structure and Mechanisms of Formation of FeOOH(NO3) Oligomers in the Early Stages of Hydrolysis.<br>Langmuir, 1997, 13, 3240-3246.                                                                             | 1.6 | 59        |
| 67 | Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4Ions. 1. Fe K-Edge EXAFS<br>Study. Langmuir, 1996, 12, 6701-6707.                                                                    | 1.6 | 107       |
| 68 | Formation of amorphous precipitates from aluminum-organic ligands solutions: macroscopic and molecular study. Journal of Non-Crystalline Solids, 1994, 171, 191-200.                                           | 1.5 | 26        |
| 69 | Aluminum(III) speciation with hydroxy carboxylic acids. Aluminum-27 NMR study. Environmental<br>Science & Technology, 1993, 27, 2511-2516.                                                                     | 4.6 | 78        |
| 70 | Aluminum(III) speciation with acetate and oxalate. A potentiometric and aluminum-27 NMR study.<br>Environmental Science & Technology, 1991, 25, 1553-1559.                                                     | 4.6 | 56        |