Christof Asbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11200051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composite micro/nano fibrous air filter by simultaneous melt and solution electrospinning. Journal of Aerosol Science, 2021, 154, 105754.	1.8	19
2	Electret Filters—From the Influence of Discharging Methods to Optimization Potential. Atmosphere, 2021, 12, 65.	1.0	8
3	The effect of water spray on the release of composite nano-dust. Clinical Oral Investigations, 2020, 24, 2403-2414.	1.4	12
4	Development of a Method to Determine the Fractional Deposition Efficiency of Full-Scale HVAC and HEPA Filter Cassettes for Nanoparticles ≥3.5 nm. Atmosphere, 2020, 11, 1191.	1.0	6
5	Ageing of electret filter media due to deposition of submicron particles – Experimental and numerical investigations. Separation and Purification Technology, 2020, 251, 117299.	3.9	15
6	Evaluation of electrostatic properties of electret filters for aerosol deposition. Separation and Purification Technology, 2020, 239, 116548.	3.9	30
7	Generation of Fine and Ultrafine Particles During Braking and Possibilities for Their Measurement. Proceedings, 2019, , 143-164.	0.2	2
8	Entstehung und Möglichkeiten zur Messung von Fein- und Ultrafeinstaub beim Bremsen. Proceedings, 2019, , 45-67.	0.2	2
9	Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors. Science of the Total Environment, 2018, 627, 689-702.	3.9	29
10	Performance of New and Artificially Aged Electret Filters in Indoor Air Cleaners. Chemical Engineering and Technology, 2018, 41, 27-34.	0.9	20
11	System Identification Method for Brake Particle Emission Measurements of Passenger Car Disc Brakes on a Dynamometer. , 2018, , .		4
12	Physikalische Grundlagen gasgetragener partikuläer Kontaminationen. VDI-Buch, 2018, , 37-67.	0.1	0
13	Numerical and experimental study of submicron aerosol deposition in electret microfiber nonwovens. Journal of Aerosol Science, 2018, 122, 32-44.	1.8	34
14	Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Science of the Total Environment, 2017, 603-604, 793-806.	3.9	69
15	On the effect of wearing personal nanoparticle monitors on the comparability of personal exposure measurements. Environmental Science: Nano, 2017, 4, 233-243.	2.2	16
16	Development of a geometric surface area monitor (GSAM) for aerosol nanoparticles. Journal of Aerosol Science, 2017, 114, 118-129.	1.8	8
17	Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Science of the Total Environment, 2017, 605-606, 929-945.	3.9	34
18	An artifact-minimizing method for total dust sampling and chemical characterization of industrial high-temperature aerosols. Aerosol Science and Technology, 2017, 51, 1047-1056.	1.5	2

CHRISTOF ASBACH

#	Article	IF	CITATIONS
19	The Potential of Activated Carbon Made of Agro-Industrial Residues in NOx Immissions Abatement. Energies, 2017, 10, 1508.	1.6	39
20	Intercomparison of a Personal CPC and Different Conventional CPCs. Aerosol and Air Quality Research, 2017, 17, 1132-1141.	0.9	17
21	Particle sampling in boilers of waste incineration plants for characterizing corrosion relevant species. Corrosion Science, 2016, 110, 82-90.	3.0	15
22	Silicone sampling tubes can cause drastic artifacts in measurements with aerosol instrumentation based on unipolar diffusion charging. Aerosol Science and Technology, 2016, 50, 1375-1384.	1.5	33
23	Influence of the degree of infiltration of modified activated carbons with CuO/ZnO on the separation of NO ₂ at ambient temperatures. Adsorption Science and Technology, 2016, 34, 307-319.	1.5	7
24	Measurement Methods for Nanoparticles in Indoor and Outdoor Air. Handbook of Environmental Chemistry, 2015, , 19-49.	0.2	3
25	Exposure Measurement at Workplaces. , 2015, , 523-555.		8
26	Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. Journal of Aerosol Science, 2015, 89, 96-109.	1.8	45
27	Monitoring and Sampling Strategy for (Manufactured) Nano Objects, Agglomerates and Aggregates (NOAA). , 2014, , 173-206.		3
28	Quality Control of Measurement Devices – What Can Be Done toÂGuarantee High-Quality Measurements?. , 2014, , 207-222.		0
29	Examples and Case Studies. , 2014, , 223-278.		3
30	Development and Evaluation of a Nanoparticle Generator for Human Inhalation Studies with Airborne Zinc Oxide. Aerosol Science and Technology, 2014, 48, 418-426.	1.5	15
31	Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Analytical Methods, 2014, 6, 7324.	1.3	232
32	From Source to Dose. , 2014, , 135-171.		3
33	Design and experimental evaluation of a new nanoparticle thermophoretic personal sampler. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	21
34	Comparability of mobility particle sizers and diffusion chargers. Journal of Aerosol Science, 2013, 57, 156-178.	1.8	98
35	Rationale for Data Evaluation of the Size Distribution Measurements of Agglomerates and Aggregates in Gases with Extended SMPS-Technology. Aerosol and Air Quality Research, 2013, 13, 1393-1403.	0.9	4
36	Comparability of Portable Nanoparticle ExposureÂMonitors <xref <br="" ref-type="corresp">rid="c1">[*]</xref> <xref ref-type="corresp" rid="c2"></xref> . Annals of Occupational Hygiene, 2012, 56, 606-21.	1.9	59

CHRISTOF ASBACH

#	Article	IF	CITATIONS
37	Mathematical Description of Experimentally Determined Charge Distributions of a Unipolar Diffusion Charger. Aerosol Science and Technology, 2012, 46, 708-716.	1.5	19
38	Total Surface Area Concentration Measurements of Nanoparticles in Gases with an Electrical Sensor. Chemie-Ingenieur-Technik, 2012, 84, 365-372.	0.4	10
39	Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	24
40	Physikalische Grundlagen gasgetragener partikulÄ re r Kontaminationen. , 2012, , 37-67.		0
41	How can nanobiotechnology oversight advance science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). Journal of Nanoparticle Research, 2011, 13, 1373-1387.	0.8	68
42	Nanoparticle exposure at nanotechnology workplaces: A review. Particle and Fibre Toxicology, 2011, 8, 22.	2.8	341
43	Particle deposition velocity onto a face-up flat surface in a laminar parallel flow considering Brownian diffusion and gravitational settling. Journal of Aerosol Science, 2010, 41, 911-920.	1.8	23
44	Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. Journal of Nanoparticle Research, 2009, 11, 1593-1609.	0.8	131
45	Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies. Journal of Nanoparticle Research, 2009, 11, 1611-1624.	0.8	27
46	Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions. Journal of Nanoparticle Research, 2009, 11, 1625-1635.	0.8	29
47	The Effect of Particle Pre-Existing Charge on Unipolar Charging and Its Implication on Electrical Aerosol Measurements. Aerosol Science and Technology, 2009, 43, 232-240.	1.5	38
48	Nanoparticle contamination control for EUVL-technology: especially for photomasks in carriers and scanners. Proceedings of SPIE, 2009, , .	0.8	0
49	Classification of highly monodisperse nanoparticles of NIST-traceable sizes by TDMA and control of deposition spot size on a surface by electrophoresis. Journal of Aerosol Science, 2008, 39, 537-548.	1.8	24
50	Controlled Deposition of \${m SiO}_{2}\$ Nanoparticles of NIST-Traceable Particle Sizes for Mask Surface Inspection System Characterization. IEEE Transactions on Semiconductor Manufacturing, 2008, 21, 238-243.	1.4	9
51	Analytical-statistical model to accurately estimate diffusional nanoparticle deposition on inverted surfaces at low pressure. Applied Physics Letters, 2008, 92, 064107.	1.5	6
52	Model for the combination of diffusional and inertial particle deposition on inverse surfaces at low pressure. Applied Physics Letters, 2008, 93, 054104.	1.5	7
53	Experimental Investigations on Particle Contamination of Masks Without Protective Pellicles During Vibration or Shipping of Mask Carriers. IEEE Transactions on Semiconductor Manufacturing, 2007, 20, 578-584.	1.4	25
54	Numerical Evaluation of Protection Schemes for EUVL Masks in Carrier Systems Against Horizontal Aerosol Flow. Journal of the Electrochemical Society, 2007, 154, H170.	1.3	19

CHRISTOF ASBACH

#	Article	IF	CITATIONS
55	Evaluation of protection schemes for extreme ultraviolet lithography (EUVL) masks against top–down aerosol flow. Journal of Aerosol Science, 2007, 38, 211-227.	1.8	33
56	Experimental Investigations of Protection Schemes for Extreme Ultraviolet Lithography Masks in Carrier Systems Against Horizontal Aerosol Flow. IEEE Transactions on Semiconductor Manufacturing, 2007, 20, 176-186.	1.4	17
57	Technical Note: Concepts for protection of EUVL masks from particle contamination. Journal of Nanoparticle Research, 2006, 8, 705-708.	0.8	26
58	Investigation of thermophoretic protection with speed-controlled particles at 100, 50, and 25â€,mTorr. Journal of Vacuum Science & Technology B, 2006, 24, 1178.	1.3	23
59	Effect of reverse flow by differential pressure on the protection of critical surfaces against particle contamination. Journal of Vacuum Science & Technology B, 2006, 24, 1844.	1.3	32
60	Speed-controlled particle injection into a low-pressure system. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 229-234.	0.9	7
61	Modeling of protection schemes for critical surfaces under low pressure conditions: Comparison between analytical and numerical approach. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2419.	1.6	16
62	Protection schemes for critical surface in vacuum environments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1319-1324.	0.9	19
63	Analytical modeling of particle stopping distance at low pressure to evaluate protection schemes for extreme ultraviolet lithography masks. Applied Physics Letters, 2005, 87, 234111.	1.5	14
64	Effect of corona discharge on the gas composition of the sample flow in a Gas Particle Partitioner. Journal of Environmental Monitoring, 2005, 7, 877.	2.1	8