Norihiko Fukatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11198730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electromotive Force of the High-Temperature Concentration Cell Using Al-Doped CaZrO ₃ as the Electrolyte. Materials Transactions, 2012, 53, 752-759.	1.2	11
2	Properties of Electrical Conductivity in Y-Doped CaZrO ₃ . Materials Transactions, 2012, 53, 973-979.	1.2	19
3	The effect of annealing on the proton conductivity of Mg-doped α-Al2O3. Ionics, 2012, 18, 85-90.	2.4	2
4	Proton conduction in Al-doped CaZrO3. Electrochimica Acta, 2011, 56, 1062-1068.	5.2	26
5	The Electromotive Force of a Hydrogen andâ^or Oxygen Concentration Cell Using 10 mol % In-doped CaZrO3 as the Solid Electrolyte. Journal of the Electrochemical Society, 2011, 158, B667.	2.9	7
6	Measurements of the electronic conductivities of In-doped CaZrO3 by a DC polarization technique. Ionics, 2010, 16, 787-795.	2.4	12
7	Electrical conductivity of calcium-doped α-alumina. Solid State Ionics, 2010, 181, 142-147.	2.7	10
8	Incorporation of hydrogen in barium-doped α-alumina. Solid State Ionics, 2009, 180, 175-182.	2.7	17
9	Electromotive Force of Gas Concentration Cell Using Alumina-Rich Nonstoichiometric Magnesium Aluminate Spinel as the Solid Electrolyte. Materials Transactions, 2008, 49, 187-192.	1.2	2
10	Hydrogen and Oxygen Chemical Potential Dependence of Electrical Conductivity of SrCe _{0.95} Yb _{0.05} O _{3-x} . Advanced Materials Research, 2006, 11-12, 125-128.	0.3	1
11	Defect structure of alumina-rich nonstoichiometric magnesium aluminate spinel. Solid State Ionics, 2006, 177, 59-64.	2.7	41
12	Hydrogen sensor based on oxide proton conductors and its application to metallurgical engineering. Ionics, 2005, 11, 54-65.	2.4	23
13	Hydrogen concentration cell using α-Al2O3 as a solid electrolyte. Solid State Ionics, 2003, 162-163, 135-145.	2.7	14
14	Analysis of Defect Structure of the Proton-Conducting Oxide CaZr[sub 0.9]In[sub 0.1]O[sub 3â^î] by a DC Polarization Technique. Journal of the Electrochemical Society, 2002, 149, D104.	2.9	9
15	Self-referenced Electrode for Galvanic Cell-type Hydrogen and Steam Sensors. Electrochemistry, 2001, 69, 536-541.	1.4	2
16	Role of the Oxide Film formed on the Surf ace of Molten Aluminum as a Membrane for Chemical Pumping of Hydrogen. Electrochemistry, 2000, 68, 709-712.	1.4	5
17	The measurement of hydrogen activities in molten copper using an oxide protonic conductor. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1996, 27, 929-935.	2.1	34
18	Protonic Conduction Domain of Indiumâ€Doped Calcium Zirconate. Journal of the Electrochemical Society, 1995, 142, 1552-1559.	2.9	128

#	Article	IF	CITATIONS
19	Hydrogen Analyzer Based on Coulometric Titration Using Proton Conductive Solid Electrolyte. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 782-788.	0.4	25
20	Determination of Charge Carriers in Solid Electrolyte SrCe _{0.95} Yb _{0.05} O _{3−δby DC Polarization. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1988, 52, 310-319.}	UB>	11
21	Electromotive Force of the Hydrogen Concentration Cell based on SrCe _{0.95} Yb _{0.05} O _{3−δSolid Electrolyte. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1987, 51, 848-857.}	UB>	19