Gerald G Mace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119514/publications.pdf

Version: 2024-02-01

201674 118850 5,509 62 27 62 citations h-index g-index papers 65 65 65 3489 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	THE CLOUDSAT MISSION AND THE A-TRAIN. Bulletin of the American Meteorological Society, 2002, 83, 1771-1790.	3.3	1,845
2	CloudSat mission: Performance and early science after the first year of operation. Journal of Geophysical Research, 2008, 113 , .	3.3	578
3	Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-GHz Cloud Radar. Journal of Atmospheric and Oceanic Technology, 2008, 25, 519-533.	1.3	416
4	A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. Journal of Geophysical Research, 2009, 114, .	3.3	356
5	Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophysical Research Letters, 2007, 34, .	4.0	172
6	The CloudSat radarâ€idar geometrical profile product (RLâ€GeoProf): Updates, improvements, and selected results. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9441-9462.	3.3	163
7	A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. Journal of Geophysical Research, 2001, 106, 14485-14500.	3.3	149
8	Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. Journal of Geophysical Research, 2010, 115, .	3.3	147
9	Effects of varying aerosol regimes on low-level Arctic stratus. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	130
10	Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign. Journal of Applied Meteorology and Climatology, 2013, 52, 1014-1030.	1.5	121
11	Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). Journal of Geophysical Research, 2010, 115, .	3.3	120
12	Cloud-Layer Overlap Characteristics Derived from Long-Term Cloud Radar Data. Journal of Climate, 2002, 15, 2505-2515.	3.2	108
13	Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sensing of Environment, 2012, 124, 159-173.	11.0	83
14	Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements. Journal of Atmospheric and Oceanic Technology, 2003, 20, 42-53.	1.3	75
15	Cloud properties and radiative effects of the Asian summer monsoon derived from Aâ€∢rain data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9492-9508.	3.3	69
16	Cluster analysis of tropical clouds using CloudSat data. Geophysical Research Letters, 2007, 34, .	4.0	58
17	Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities. Journal of Geophysical Research, 2006, 111 , .	3.3	56
18	Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from Aâ€√rain. Journal of Geophysical Research, 2010, 115, .	3.3	56

#	Article	IF	CITATIONS
19	The Vertical Structure of Cloud Occurrence and Radiative Forcing at the SGP ARM Site as Revealed by 8 Years of Continuous Data. Journal of Climate, 2008, 21, 2591-2610.	3.2	50
20	Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia. Journal of Applied Meteorology and Climatology, 2014, 53, 456-478.	1.5	44
21	CloudSat 2Câ€ICE product update with a new <i>Z_{e< sub>}</i> parameterization in lidarâ€only region. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12198-12208.	3.3	42
22	Clouds over the Southern Ocean as Observed from the R/V Investigator during CAPRICORN. Part I: Cloud Occurrence and Phase Partitioning. Journal of Applied Meteorology and Climatology, 2018, 57, 1783-1803.	1.5	41
23	Evaluation of the Hydrometeor Layers in the East and West Pacific within ISCCP Cloud-Top Pressure–Optical Depth Bins Using Merged CloudSat and CALIPSO Data. Journal of Climate, 2013, 26, 9429-9444.	3.2	39
24	Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data. Journal of Climate, 2011, 24, 1598-1612.	3.2	31
25	Cloud vertical distribution from combined surface and space radar–lidar observations at two Arctic atmospheric observatories. Atmospheric Chemistry and Physics, 2017, 17, 5973-5989.	4.9	31
26	The Occurrence of Particle Size Distribution Bimodality in Midlatitude Cirrus as Inferred from Ground-Based Remote Sensing Data. Journals of the Atmospheric Sciences, 2011, 68, 1162-1177.	1.7	30
27	Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bulletin of the American Meteorological Society, 2020, 101, E1512-E1523.	3.3	28
28	Retrieving coâ€occurring cloud and precipitation properties of warm marine boundary layer clouds with Aâ€₁rain data. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4008-4033.	3.3	27
29	Midwinter Arctic leads form and dissipate low clouds. Nature Communications, 2020, 11, 206.	12.8	25
30	Southern Ocean Cloud Properties Derived From CAPRICORN and MARCUS Data. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033368.	3.3	25
31	MCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar–Passive Microwave Cloud Property Retrieval. Journal of Applied Meteorology and Climatology, 2014, 53, 2034-2057.	1.5	24
32	Cloud occurrences and cloud radiative effects (CREs) from CERESâ€CALIPSOâ€CloudSatâ€MODIS (CCCM) and CloudSat radarâ€lidar (RL) products. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8852-8884.	3.3	24
33	Cloud Property Retrievals in the ARM Program. Meteorological Monographs, 2016, 57, 19.1-19.20.	5.0	22
34	Characteristics of Seaâ€Effect Clouds and Precipitation Over the Sea of Japan Region as Observed by Aâ€Train Satellites. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1322-1335.	3.3	20
35	The Latitudinal Variability of Oceanic Rainfall Properties and Its Implication for Satellite Retrievals: 1. Drop Size Distribution Properties. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13291-13311.	3.3	20
36	Southern Ocean latitudinal gradients of cloud condensation nuclei. Atmospheric Chemistry and Physics, 2021, 21, 12757-12782.	4.9	20

#	Article	IF	CITATIONS
37	On the Frequency of Occurrence of the Ice Phase in Supercooled Southern Ocean Low Clouds Derived From CALIPSO and CloudSat. Geophysical Research Letters, 2020, 47, e2020GL087554.	4.0	19
38	Mixedâ€Phase Clouds Over the Southern Ocean as Observed From Satellite and Surface Based Lidar and Radar. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034569.	3.3	19
39	Diagnosing Cloud Microphysical Process Information from Remote Sensing Measurements—A Feasibility Study Using Aircraft Data. Part I: Tropical Anvils Measured during TC4. Journal of Applied Meteorology and Climatology, 2017, 56, 633-649.	1.5	18
40	Mixedâ€Phase Clouds and Precipitation in Southern Ocean Cyclones and Cloud Systems Observed Poleward of 64°S by Shipâ€Based Cloud Radar and Lidar. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033626.	3.3	18
41	Clouds over the Southern Ocean as Observed from the R/V Investigator during CAPRICORN. Part II: The Properties of Nonprecipitating Stratocumulus. Journal of Applied Meteorology and Climatology, 2018, 57, 1805-1823.	1.5	17
42	Characterizing the Radar Backscatter-Cross-Section Sensitivities of Ice-Phase Hydrometeor Size Distributions via a Simple Scaling of the Clausius–Mossotti Factor. Journal of Applied Meteorology and Climatology, 2014, 53, 2761-2774.	1.5	16
43	Satelliteâ€Based Detection of Daytime Supercooled Liquidâ€Topped Mixedâ€Phase Clouds Over the Southern Ocean Using the Advanced Himawari Imager. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2677-2701.	3.3	16
44	Coâ€occurrence statistics of tropical tropopause layer cirrus with lower cloud layers as derived from CloudSat and CALIPSO data. Journal of Geophysical Research, 2010, 115, .	3.3	14
45	Observational evidence for aerosol invigoration in shallow cumulus downstream of Mount Kilauea. Geophysical Research Letters, 2016, 43, 2981-2988.	4.0	14
46	Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences. Journals of the Atmospheric Sciences, 2016, 73, 3467-3487.	1.7	13
47	Using A-Train Observations to Evaluate Cloud Occurrence and Radiative Effects in the Community Atmosphere Model during the Southeast Asia Summer Monsoon. Journal of Climate, 2019, 32, 4145-4165.	3.2	13
48	The Latitudinal Variability of Oceanic Rainfall Properties and Its Implication for Satellite Retrievals: 2. The Relationships Between Radar Observables and Drop Size Distribution Parameters. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13312-13324.	3.3	12
49	Seasonal variability of warm boundary layer cloud and precipitation properties in the Southern Ocean as diagnosed from Aâ€Train data. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1015-1032.	3.3	11
50	Bayesian Retrievals of Vertically Resolved Cloud Particle Size Distribution Properties. Journal of Applied Meteorology and Climatology, 2017, 56, 745-765.	1.5	8
51	Using Active Remote Sensing to Evaluate Cloud-Climate Feedbacks: a Review and a Look to the Future. Current Climate Change Reports, 2017, 3, 185-192.	8.6	7
52	Ice Particle Mass–Dimensional Relationship Retrieval and Uncertainty Evaluation Using the Optimal Estimation Methodology Applied to the MACPEX Data. Journal of Applied Meteorology and Climatology, 2017, 56, 767-788.	1.5	7
53	Quantifying uncertainties in radar forward models through a comparison between CloudSat and SPartlCus reflectivity factors. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1665-1684.	3.3	7
54	The Mass-Dimensional Properties of Cirrus Clouds During TC4. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,402-10,417.	3.3	6

#	Article	IF	CITATIONS
55	Relationship Between Wintertime Leads and Low Clouds in the Panâ€Arctic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032595.	3.3	6
56	Using A-Train Observations to Evaluate East Pacific Cloud Occurrence and Radiative Effects in the Community Atmosphere Model. Journal of Climate, 2020, 33, 6187-6203.	3.2	6
57	Assessing the accuracy of MISR and MISRâ€simulated cloud top heights using CloudSat―and CALIPSOâ€retrieved hydrometeor profiles. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2878-2897.	3. 3	5
58	A Method for Assessing Relative Skill in Retrieving Cloud and Precipitation Properties in Next-Generation Cloud Radar and Radiometer Orbiting Observatories. Journal of Atmospheric and Oceanic Technology, 2019, 36, 2283-2306.	1.3	4
59	Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms. Atmospheric Measurement Techniques, 2022, 15, 927-944.	3.1	3
60	Synthesizing the Vertical Structure of Tropical Cirrus by Combining CloudSat Radar Reflectivity With In Situ Microphysical Measurements Using Bayesian Monte Carlo Integration. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031882.	3.3	2
61	How Accurately Can Warm Rain Realistically Be Retrieved with Satellite Sensors? Part I: DSD Uncertainties. Journal of Applied Meteorology and Climatology, 2022, 61, 1087-1105.	1.5	2
62	Assessing Synergistic Radar and Radiometer Retrievals of Ice Cloud Microphysics for the Atmosphere Observing System (AOS) Architecture. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	1