
Rainer Kind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11194861/publications.pdf Version: 2024-02-01

PAINED KIND

#	Article	IF	CITATIONS
1	The rapid drift of the Indian tectonic plate. Nature, 2007, 449, 894-897.	13.7	391
2	Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. Journal of Geophysical Research, 1997, 102, 27491-27500.	3.3	338
3	The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11229-11233.	3.3	332
4	Rejuvenation of the lithosphere by the Hawaiian plume. Nature, 2004, 427, 827-829.	13.7	233
5	Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth and Planetary Science Letters, 2010, 292, 254-264.	1.8	203
6	Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 2011, 4, 870-873.	5.4	202
7	TheSreceiver functions: synthetics and data example. Geophysical Journal International, 2006, 165, 555-564.	1.0	191
8	Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	186
9	Seismic polarization anisotropy beneath the central Tibetan Plateau. Journal of Geophysical Research, 2000, 105, 27979-27989.	3.3	181
10	Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 2012, 536-537, 25-43.	0.9	150
11	Crustal structure of the Indian Shield: New constraints from teleseismic receiver functions. Geophysical Research Letters, 2001, 28, 1339-1342.	1.5	118
12	The lithosphere-asthenosphere boundary beneath the western United States. Geophysical Journal International, 2007, 170, 700-710.	1.0	117
13	Seismic evidence for very deep roots of continents. Earth and Planetary Science Letters, 1996, 138, 1-13.	1.8	107
14	First deep seismic reflection images of the Eastern Alps reveal giant crustal wedges and transcrustal ramps. Geophysical Research Letters, 2002, 29, 92-1-92-4.	1.5	102
15	Depth to Moho in Greenland: receiver-function analysis suggests two Proterozoic blocks in Greenland. Earth and Planetary Science Letters, 2003, 205, 379-393.	1.8	98
16	Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. Journal of Geophysical Research, 1997, 102, 17813-17823.	3.3	92
17	Seismic structure and location of a CO2source in the upper mantle of the western Eger (Ohře) Rift, central Europe. Tectonics, 2005, 24, n/a-n/a.	1.3	91
18	Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton. Geochemistry, Geophysics, Geosystems, 2013, 14, 5393-5412.	1.0	85

RAINER KIND

#	Article	IF	CITATIONS
19	Seismic Images of the Biggest Crash on Earth. Science, 2010, 329, 1479-1480.	6.0	66
20	A receiver function perspective of the Dharwar craton (India) crustal structure. Geophysical Journal International, 2003, 154, 205-211.	1.0	61
21	Detection of southward intracontinental subduction of Tibetan lithosphere along the Bangong-Nujiang suture by P-to-S converted waves. Geology, 2004, 32, 209.	2.0	58
22	Seismic study of upper mantle and transition zone beneath hotspots. Physics of the Earth and Planetary Interiors, 2003, 136, 79-92.	0.7	52
23	The MohoroviÄić discontinuity beneath the continental crust: An overview of seismic constraints. Tectonophysics, 2013, 609, 353-376.	0.9	52
24	Major crustal features between the Harz Mountains and the Baltic Shield derived from receiver functions. Tectonophysics, 1999, 314, 321-333.	0.9	49
25	Thickness of the lithosphere east of the Dead Sea Transform. Geophysical Journal International, 2006, 167, 845-852.	1.0	49
26	Crustal thickness estimation beneath the southern central Andes at 30°S and 36°S from <i>S</i> wave receiver function analysis. Geophysical Journal International, 2008, 174, 249-254.	1.0	48
27	Thickness of the central and eastern European lithosphere as seen by <i>S</i> receiver functions. Geophysical Journal International, 2010, , .	1.0	45
28	Receiver function summation without deconvolution. Geophysical Journal International, 2010, 180, 1223-1230.	1.0	41
29	Upper mantle and lithospheric heterogeneities in central and eastern Europe as observed by teleseismic receiver functions. Geophysical Journal International, 2008, 174, 351-376.	1.0	40
30	A 3D shear-wave velocity model of the upper mantle beneath China and the surrounding areas. Tectonophysics, 2014, 633, 193-210.	0.9	40
31	Crustal structure and upper mantle stratigraphy of the Arabian shield. Geophysical Research Letters, 2002, 29, 130-1-130-4.	1.5	39
32	The upper mantle under Central Europe: indications for the EifelÂplume. Geophysical Journal International, 2001, 147, 590-601.	1.0	33
33	Shear wave splitting in the Eastern Alps observed at the TRANSALP network. Tectonophysics, 2006, 414, 117-125.	0.9	25
34	Study of the lithospheric and upper-mantle discontinuities beneath eastern Asia by SS precursors. Geophysical Journal International, 2010, 183, 252-266.	1.0	25
35	Presence of a layered lithosphere beneath the Zagros collision zone. Tectonophysics, 2013, 608, 366-375.	0.9	24
36	New insights into the structural elements of the upper mantle beneath the contiguous United States from <i>S</i> -to- <i>P</i> converted seismic waves. Geophysical Journal International, 2020, 222, 646-659.	1.0	24

RAINER KIND

#	Article	IF	CITATIONS
37	Lithosphere structure of the NE Bohemian Massif (Sudetes) — A teleseismic receiver function study. Tectonophysics, 2012, 564-565, 12-37.	0.9	23
38	Seismological evidence for a very sharp Sorgenfrei-Tornquist Zone in southern Sweden. Geological Magazine, 1997, 134, 591-595.	0.9	22
39	Detection of a new sub-lithospheric discontinuity in Central Europe with S-receiver functions. Tectonophysics, 2017, 700-701, 19-31.	0.9	21
40	Analysis of broadband seismograms from the Chile-eru area. Bulletin of the Seismological Society of America, 1982, 72, 2131-2145.	1.1	21
41	Receiver function images of the base of the lithosphere in the Alboran Sea region. Geophysical Journal International, 2011, 187, 1019-1026.	1.0	18
42	Imaging the Mantle Lithosphere below the China cratons using S-to-p converted waves. Tectonophysics, 2019, 754, 73-79.	0.9	16
43	Receiver function search for a baby plume in the mantle transition zone beneath the Bohemian Massif. Geophysical Journal International, 2011, 187, 577-594.	1.0	12
44	Lateral growth of NE Tibetan Plateau restricted by the Asian lithosphere: Results from a dense seismic profile. Gondwana Research, 2020, 87, 238-247.	3.0	12
45	Receiver-function imaging of the lithosphere at the Kunlun-Qaidam boundary, Northeast Tibet. Tectonophysics, 2019, 759, 30-43.	0.9	10
46	Comment [on "Mantle layering from <i>ScS</i> reverberations, 2, The transition zone―by Justin Revenaugh and Thomas H. Jordan]. Journal of Geophysical Research, 1992, 97, 17547-17548.	3.3	9
47	Observations of regional strain variations. Journal of Geophysical Research, 1972, 77, 4976-4980.	3.3	7
48	Regional secular strain fields in southern Nevada. Tectonophysics, 1972, 14, 57-69.	0.9	7
49	Moho and uppermost mantle structure in the Alpine area from S-to-P converted waves. Solid Earth, 2021, 12, 2503-2521.	1.2	7
50	Tracing the Hawaiian Mantle Plume by Converted Seismic Waves. , 2007, , 49-69.		5
51	Investigation of mantle discontinuities from a single deep earthquake. Geophysical Research Letters, 1994, 21, 1495-1498.	1.5	4
52	The lithosphere–asthenosphere boundary in the eastern part of the Dead Sea Basin (DSB) from S-to-P receiver functions. Arabian Journal of Geosciences, 2013, 6, 2343-2350.	0.6	2
53	Seismic, Receiver Function Technique. Encyclopedia of Earth Sciences Series, 2011, , 1258-1269.	0.1	2
54	Generation of the teleseismic P-wave coda from Aleutian earthquakes. Geophysical Journal International, 1997, 130, 349-364.	1.0	1

RAINER KIND

#	Article	IF	CITATIONS
55	Seismic discontinuities in the lithospheric mantle at the Dead Sea Transform. Geophysical Journal International, 2020, 223, 1948-1955.	1.0	1
56	Seismic, Receiver Function Technique. Encyclopedia of Earth Sciences Series, 2021, , 1580-1592.	0.1	1
57	Receiver Functions with S Waves. , 2016, , 1-16.		1
58	Moho Doublet in Southern Tibet and Its Tectonic Implication. Acta Geologica Sinica, 2019, 93, 43-44.	0.8	0
59	Seismic, Receiver Function Technique. Encyclopedia of Earth Sciences Series, 2019, , 1-13.	0.1	0