Jacques Jestin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling the Morphology in Epoxy/Thermoplastic Systems. ACS Applied Polymer Materials, 2022, 4, 2091-2104.	4.4	8
2	Unexpected thermo-responsiveness of bisurea-functionalized hydrophilic polymers in water. Journal of Colloid and Interface Science, 2021, 581, 874-883.	9.4	4
3	How crucial is the impact of calcium on the reactivity of iron-organic matter aggregates? Insights from arsenic. Journal of Hazardous Materials, 2021, 404, 124127.	12.4	9
4	Morphological changes of silica aged under environmental conditions by three-dimensional nanoscale quantifications. Journal of Materials Chemistry A, 2021, 9, 16447-16455.	10.3	0
5	The desalting/salting pathway: a route to form metastable aggregates with tuneable morphologies and lifetimes. Soft Matter, 2021, 17, 8496-8505.	2.7	2
6	Coaxial electrospinning process toward optimal nanoparticle dispersion in polymeric matrix. Polymer Composites, 2021, 42, 1565-1573.	4.6	8
7	Photolabile Wellâ€Defined Polystyrene Grafted on Silica Nanoparticle via Nitroxideâ€Mediated Polymerization (NMP). Macromolecular Rapid Communications, 2021, 42, e2100181.	3.9	4
8	Poly(ethylene oxide) grafted silica nanoparticles: efficient routes of synthesis with associated colloidal stability. Soft Matter, 2021, 17, 6552-6565.	2.7	6
9	Crucial Role of the Spacer in Tuning the Length of Self-Assembled Nanorods. Macromolecules, 2020, 53, 427-433.	4.8	6
10	Probing Multiscale Structure of Mineral and Nanoporous Kerogen Phase in Organic-Rich Source Rocks: Quantitative Comparison of Small-Angle X-ray and Neutron Scattering. Energy & Fuels, 2020, 34, 9339-9354.	5.1	5
11	Tuning Selectivities in Gas Separation Membranes Based on Polymer-Grafted Nanoparticles. ACS Nano, 2020, 14, 17174-17183.	14.6	55
12	How does calcium drive the structural organization of iron–organic matter aggregates? A multiscale investigation. Environmental Science: Nano, 2020, 7, 2833-2849.	4.3	10
13	Straightforward preparation of supramolecular Janus nanorods by hydrogen bonding of end-functionalized polymers. Nature Communications, 2020, 11, 4760.	12.8	12
14	Tailoring the Proton Conductivity and Microstructure of Block Copolymers by Countercation-Selective Membrane Fabrication. Journal of Physical Chemistry C, 2020, 124, 13071-13081.	3.1	5
15	Adhesive Sponge Based on Supramolecular Dimer Interactions as Scaffolds for Neural Stem Cells. Biomacromolecules, 2020, 21, 3394-3410.	5.4	2
16	Insight into Kinetics and Mechanisms of AOT Vesicle Adsorption on Silica in Unfavorable Conditions. Langmuir, 2020, 36, 1937-1949.	3.5	7
17	Synthesis of polyisoprene, polybutadiene and Styrene Butadiene Rubber grafted silica nanoparticles by nitroxide-mediated polymerization. Polymer, 2020, 190, 122190.	3.8	20
18	A Competing Hydrogen Bonding Pattern to Yield a Thermoâ€Thickening Supramolecular Polymer. Angewandte Chemie, 2019, 131, 13987-13991.	2.0	6

#	Article	IF	CITATIONS
19	A Competing Hydrogen Bonding Pattern to Yield a Thermoâ€Thickening Supramolecular Polymer. Angewandte Chemie - International Edition, 2019, 58, 13849-13853.	13.8	23
20	Robust supramolecular nanocylinders of naphthalene diimide in water. Chemical Communications, 2019, 55, 9519-9522.	4.1	14
21	Iron speciation in iron–organic matter nanoaggregates: a kinetic approach coupling Quick-EXAFS and MCR-ALS chemometrics. Environmental Science: Nano, 2019, 6, 2641-2651.	4.3	18
22	Accelerated Local Dynamics in Matrix-Free Polymer Grafted Nanoparticles. Physical Review Letters, 2019, 123, 158003.	7.8	24
23	Morphologies of Polyisoprene-Grafted Silica Nanoparticles in Model Elastomers. Macromolecules, 2019, 52, 7638-7645.	4.8	19
24	pH-Induced reorientation of cytochrome <i>c</i> on silica nanoparticles. Soft Matter, 2019, 15, 350-354.	2.7	26
25	Exchange Lifetimes of the Bound Polymer Layer on Silica Nanoparticles. ACS Macro Letters, 2019, 8, 166-171.	4.8	50
26	Effects of Hairy Nanoparticles on Polymer Crystallization Kinetics. Macromolecules, 2019, 52, 9186-9198.	4.8	27
27	Melt Chain Conformation in Nanoparticles/Polymer Nanocomposites Elucidated by the SANS Extrapolation Method: Evidence of the Filler Contribution. Macromolecules, 2018, 51, 2216-2226.	4.8	13
28	Aromatic Copolymer/Nafion Blends Outperforming the Corresponding Pristine Ionomers. ACS Applied Energy Materials, 2018, 1, 355-367.	5.1	10
29	Bisurea-Functionalized RAFT Agent: A Straightforward and Versatile Tool toward the Preparation of Supramolecular Cylindrical Nanostructures in Water. Macromolecules, 2018, 51, 10214-10222.	4.8	18
30	lonic PMMA/nanosilica interfaces from grafting ionic liquids under supercritical CO2 conditions. European Polymer Journal, 2018, 109, 82-92.	5.4	7
31	Location of Imbibed Solvent in Polymer-Grafted Nanoparticle Membranes. ACS Macro Letters, 2018, 7, 1051-1055.	4.8	12
32	Controlling Microstructure–Transport Interplay in Highly Phase-Separated Perfluorosulfonated Aromatic Multiblock Ionomers via Molecular Architecture Design. ACS Applied Materials & Interfaces, 2017, 9, 1671-1683.	8.0	21
33	Highlighting the wide variability in arsenic speciation in wetlands: A new insight into the control of the behavior of arsenic. Geochimica Et Cosmochimica Acta, 2017, 203, 284-302.	3.9	25
34	Characterization of iron–organic matter nano-aggregate networks through a combination of SAXS/SANS and XAS analyses: impact on As binding. Environmental Science: Nano, 2017, 4, 938-954.	4.3	39
35	Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization. ACS Central Science, 2017, 3, 751-758.	11.3	60
36	Preparation of water-soluble graphene nanoplatelets and highly conductive films. Carbon, 2017, 124, 133-141.	10.3	16

#	Article	IF	CITATIONS
37	Modeling and Theory: general discussion. Faraday Discussions, 2016, 186, 371-398.	3.2	1
38	Structure of alumina-silica nanoparticles grafted with alkylphosphonic acids in poly(ethylacrylate) nanocomposites. Polymer, 2016, 97, 138-146.	3.8	15
39	Molten fatty acid based microemulsions. Physical Chemistry Chemical Physics, 2016, 18, 15911-15918.	2.8	7
40	Polymer Chain Behavior in Polymer Nanocomposites with Attractive Interactions. ACS Macro Letters, 2016, 5, 523-527.	4.8	63
41	Synthesis of Nanoparticle Assemblies: general discussion. Faraday Discussions, 2016, 186, 123-152.	3.2	0
42	Nanocomposites: general discussion. Faraday Discussions, 2016, 186, 277-293.	3.2	1
43	Two-Component Self-Assemblies: Investigation of a Synergy between Bisurea Stickers. Langmuir, 2016, 32, 11664-11671.	3.5	7
44	Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites. Soft Matter, 2016, 12, 7241-7247.	2.7	19
45	Evidence of organic matter control on As oxidation by iron oxides in riparian wetlands. Chemical Geology, 2016, 439, 161-172.	3.3	32
46	Intra- and Interchain Correlations in Polymer Nanocomposites: A Small-Angle Neutron Scattering Extrapolation Method. ACS Macro Letters, 2016, 5, 1095-1099.	4.8	19
47	Self-Assembly of Monodisperse versus Bidisperse Polymer-Grafted Nanoparticles. ACS Macro Letters, 2016, 5, 790-795.	4.8	40
48	From nanopores to macropores: Fractal morphology of graphite. Carbon, 2016, 96, 541-547.	10.3	23
49	Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites. Faraday Discussions, 2016, 186, 325-343.	3.2	29
50	Role of Filler Shape and Connectivity on the Viscoelastic Behavior in Polymer Nanocomposites. Macromolecules, 2015, 48, 5433-5438.	4.8	96
51	On the design and experimental realization of a multislit-based very small angle neutron scattering instrument at the European Spallation Source. Journal of Applied Crystallography, 2015, 48, 1242-1253.	4.5	8
52	Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution. Langmuir, 2015, 31, 8121-8128.	3.5	18
53	Effect of aging and alkali activator on the porous structure of a geopolymer. Journal of Applied Crystallography, 2014, 47, 316-324.	4.5	66
54	Quenched microemulsions: a new route to proton conductors. Soft Matter, 2014, 10, 5928-5935.	2.7	7

#	Article	IF	CITATIONS
55	New regime in polyelectrolyte solutions. Europhysics Letters, 2014, 106, 28003.	2.0	11
56	Nanofiller Structure and Reinforcement in Model Silica/Rubber Composites: A Quantitative Correlation Driven by Interfacial Agents. Macromolecules, 2014, 47, 5365-5378.	4.8	77
57	3D Dispersion of Spherical Silica Nanoparticles in Polymer Nanocomposites: A Quantitative Study by Electron Tomography. Macromolecules, 2014, 47, 2044-2051.	4.8	30
58	Comparative Study of Proton Conducting Ionic Liquid Doped Nafion Membranes Elaborated by Swelling and Casting Methods: Processing Conditions, Morphology, and Functional Properties. Journal of Physical Chemistry C, 2014, 118, 14157-14168.	3.1	31
59	Nanoparticles reorganizations in polymer nanocomposites under large deformation. Polymer, 2014, 55, 2523-2534.	3.8	19
60	Mechanical reinforcement in model elastomer nanocomposites with tuned microstructure and interactions. Polymer, 2013, 54, 1466-1479.	3.8	31
61	Self-assembling properties of a series of homologous ester-diamides – from ribbons to nanotubes. Soft Matter, 2013, 9, 8483.	2.7	17
62	Water management in proton exchange membrane fuel cell at sub-zero temperatures: An in operando SANS-EIS coupled study. Solid State Ionics, 2013, 252, 56-61.	2.7	30
63	Stalk-free membrane fusion of cationic lipids via an interdigitated phase. Soft Matter, 2012, 8, 7243.	2.7	9
64	How clay colloids surround internally self-assembled phytantriol drops Soft Matter, 2012, 8, 10502.	2.7	6
65	Controlled grafted brushes of polystyrene on magnetic Î ³ -Fe2O3 nanoparticles via nitroxide-mediated polymerization. Soft Matter, 2012, 8, 3407.	2.7	24
66	Polymer-Grafted Magnetic Nanoparticles in Nanocomposites: Curvature Effects, Conformation of Grafted Chain, and Bimodal Nanotriggering of Filler Organization by Combination of Chain Grafting and Magnetic Field. Macromolecules, 2012, 45, 9220-9231.	4.8	32
67	Proton Conducting Ionic Liquid Doped Nafion Membranes: Nano-Structuration, Transport Properties and Water Sorption. Journal of Physical Chemistry C, 2012, 116, 24413-24423.	3.1	53
68	Unusual, pH-Induced, Self-Assembly Of Sophorolipid Biosurfactants. ACS Nano, 2012, 6, 4763-4776.	14.6	97
69	Multiscale characterization of filler dispersion and origins of mechanical reinforcement in model nanocomposites. Polymer, 2012, 53, 761-775.	3.8	88
70	Influence of chain interdiffusion between immiscible polymers on dewetting dynamics. Soft Matter, 2011, 7, 9951.	2.7	22
71	Osmotically induced deformation of capsid-like icosahedral vesicles. Soft Matter, 2011, 7, 1084-1089.	2.7	25
72	Nanocomposite Materials with Controlled Anisotropic Reinforcement Triggered by Magnetic Self-Assembly. Macromolecules, 2011, 44, 8858-8865.	4.8	52

#	Article	IF	CITATIONS
73	Insight into Asphaltene Nanoaggregate Structure Inferred by Small Angle Neutron and X-ray Scattering. Journal of Physical Chemistry B, 2011, 115, 6827-6837.	2.6	245
74	Controlled grafting of polystyrene on silicananoparticles using NMP: a new route without free initiator to tune the grafted chain length. Polymer Chemistry, 2011, 2, 567-571.	3.9	23
75	Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior. Macromolecules, 2011, 44, 122-133.	4.8	292
76	Tuning the mechanical properties in model nanocomposites: Influence of the polymerâ€filler interfacial interactions. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 781-791.	2.1	72
77	Amphiphilic Diblock Copolymers with a Moderately Hydrophobic Block: Toward Dynamic Micelles. Macromolecules, 2010, 43, 2667-2671.	4.8	67
78	Direct Measurement of Polymer Chain Conformation in Well-Controlled Model Nanocomposites by Combining SANS and SAXS. Macromolecules, 2010, 43, 9881-9891.	4.8	78
79	Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles' Size. Macromolecules, 2010, 43, 5785-5796.	4.8	39
80	"Wet-to-Dry―Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite. Macromolecules, 2010, 43, 4833-4837.	4.8	69
81	Direct small-angle-neutron-scattering observation of stretched chain conformation in nanocomposites: More insight on polymer contributions in mechanical reinforcement. Physical Review E, 2010, 82, 031801.	2.1	42
82	Microemulsion nanocomposites: phase diagram, rheology and structure using a combined small angle neutron scattering and reverse Monte Carlo approach. Soft Matter, 2010, 6, 5605.	2.7	14
83	Well-Dispersed Fractal Aggregates as Filler in Polymerâ^'Silica Nanocomposites: Long-Range Effects in Rheology. Macromolecules, 2009, 42, 2031-2040.	4.8	242
84	Relation between Solution and Interfacial Properties of Asphaltene Aggregates. Energy & Fuels, 2009, 23, 306-313.	5.1	48
85	Asphaltene Adsorption Mechanisms on the Local Scale Probed by Neutron Reflectivity: Transition from Monolayer to Multilayer Growth above the Flocculation Threshold. Langmuir, 2009, 25, 3991-3998.	3.5	41
86	Polystyrene grafting from silica nanoparticles via nitroxide-mediated polymerization (NMP): synthesis and SANS analysis with the contrast variation method. Soft Matter, 2009, 5, 3741.	2.7	78
87	Anisotropic Reinforcement of Nanocomposites Tuned by Magnetic Orientation of the Filler Network. Advanced Materials, 2008, 20, 2533-2540.	21.0	70
88	Insight into silicate-glass corrosion mechanisms. Nature Materials, 2008, 7, 978-983.	27.5	402
89	A Small Angle Neutron Scattering Study of the Adsorbed Asphaltene Layer in Water-in-Hydrocarbon Emulsions:  Structural Description Related to Stability. Langmuir, 2007, 23, 10471-10478.	3.5	86
90	Control of the Colloidal Stability of Polymer-Grafted-Silica Nanoparticles Obtained by Atom Transfer Radical Polymerization. Macromolecular Symposia, 2005, 226, 263-278.	0.7	8

#	Article	IF	CITATIONS
91	Structure and rheological properties of soft–hard nanocomposites: influence of aggregation and interfacial modification. Polymer, 2005, 46, 6695-6705.	3.8	44
92	Adsorption Mechanism of Substituted Pyridines on Silica Suspensions:Â An NMR Study. Langmuir, 2004, 20, 10591-10598.	3.5	16
93	Application of NMR Solvent Relaxation and SAXS to Asphaltenes Solutions Characterization. Journal of Dispersion Science and Technology, 2004, 25, 341-347.	2.4	16