
Jason D Slinker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119432/publications.pdf Version: 2024-02-01

LASON D SLINKER

#	Article	IF	CITATIONS
1	Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. Chemistry of Materials, 2005, 17, 5712-5719.	3.2	829
2	Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex. Journal of the American Chemical Society, 2004, 126, 2763-2767.	6.6	654
3	Electroluminescent devices from ionic transition metal complexes. Journal of Materials Chemistry, 2007, 17, 2976-2988.	6.7	338
4	Solid-state electroluminescent devices based on transition metal complexes. Chemical Communications, 2003, , 2392-2399.	2.2	324
5	DNA charge transport over 34Ânm. Nature Chemistry, 2011, 3, 228-233.	6.6	304
6	Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nature Materials, 2007, 6, 894-899.	13.3	275
7	Improved Turn-on Times of Iridium Electroluminescent Devices by Use of Ionic Liquids. Chemistry of Materials, 2005, 17, 3187-3190.	3.2	202
8	Electrospun Light-Emitting Nanofibers. Nano Letters, 2007, 7, 458-463.	4.5	139
9	Green electroluminescence from an ionic iridium complex. Applied Physics Letters, 2005, 86, 173506.	1.5	127
10	Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics. Applied Physics Letters, 2001, 79, 1300-1302.	1.5	124
11	Improved Turn-On Times of Light-Emitting Electrochemical Cells. Chemistry of Materials, 2008, 20, 388-396.	3.2	110
12	Identification of a Quenching Species in Ruthenium Tris-Bipyridine Electroluminescent Devices. Journal of the American Chemical Society, 2006, 128, 7761-7764.	6.6	104
13	Addition of a Phosphorescent Dopant in Electroluminescent Devices from Ionic Transition Metal Complexes. Chemistry of Materials, 2005, 17, 6114-6116.	3.2	93
14	Multiplexed DNA-Modified Electrodes. Journal of the American Chemical Society, 2010, 132, 2769-2774.	6.6	79
15	Photophysical properties of tris(bipyridyl)ruthenium(ii) thin films and devices. Physical Chemistry Chemical Physics, 2003, 5, 2706-2709.	1.3	75
16	Blue light emitting electrochemical cells incorporating triazole-based luminophores. Journal of Materials Chemistry C, 2013, 1, 7440.	2.7	68
17	Improving light-emitting electrochemical cells with ionic additives. Applied Physics Letters, 2013, 102, .	1.5	64
18	DNA as a Molecular Wire: Distance and Sequence Dependence. Analytical Chemistry, 2013, 85, 8634-8640.	3.2	62

JASON D SLINKER

#	Article	IF	CITATIONS
19	Organic light-emitting devices with laminated top contacts. Applied Physics Letters, 2004, 84, 3675-3677.	1.5	57
20	High stability light-emitting electrochemical cells from cationic iridium complexes with bulky 5,5′ substituents. Journal of Materials Chemistry, 2011, 21, 18083.	6.7	55
21	Enhanced Luminance of Electrochemical Cells with a Rationally Designed Ionic Iridium Complex and an Ionic Additive. ACS Applied Materials & amp; Interfaces, 2016, 8, 8888-8892.	4.0	54
22	Contact issues in electroluminescent devices from ruthenium complexes. Applied Physics Letters, 2004, 84, 807-809.	1.5	50
23	Sensitive and selective real-time electrochemical monitoring of DNA repair. Biosensors and Bioelectronics, 2014, 54, 541-546.	5.3	50
24	Operating mechanism of light-emitting electrochemical cells. Nature Materials, 2008, 7, 168-168.	13.3	49
25	Bright and Effectual Perovskite Light-Emitting Electrochemical Cells Leveraging Ionic Additives. ACS Energy Letters, 2019, 4, 2922-2928.	8.8	47
26	Direct 120V, 60Hz operation of an organic light emitting device. Journal of Applied Physics, 2006, 99, 074502.	1.1	46
27	A light-emitting memristor. Organic Electronics, 2010, 11, 150-153.	1.4	44
28	Observation of intermediate-range order in a nominally amorphous molecular semiconductor film. Journal of Materials Chemistry, 2007, 17, 1458-1461.	6.7	39
29	Cationic iridium(<scp>iii</scp>) complexes bearing ancillary 2,5-dipyridyl(pyrazine) (2,5-dpp) and 2,2′.5′,2′′-terpyridine (2,5-tpy) ligands: synthesis, optoelectronic characterization and light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 13672-13682.	1.6	39
30	Influence of Lithium Additives in Small Molecule Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 16776-16782.	4.0	39
31	In situ identification of a luminescence quencher in an organic light-emitting device. Journal of Materials Chemistry, 2007, 17, 76-81.	6.7	38
32	Discerning the Impact of a Lithium Salt Additive in Thin-Film Light-Emitting Electrochemical Cells with Electrochemical Impedance Spectroscopy. Langmuir, 2016, 32, 9468-9474.	1.6	37
33	Phenyl substitution of cationic bis-cyclometalated iridium(<scp>iii</scp>) complexes for iTMC-LEECs. Dalton Transactions, 2016, 45, 17807-17823.	1.6	37
34	Cascaded light-emitting devices based on a ruthenium complex. Applied Physics Letters, 2004, 84, 4980-4982.	1.5	33
35	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices. Advanced Optical Materials, 2021, 9, 2001715.	3.6	33
36	Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives. Advanced Optical Materials, 2020, 8, 2000226.	3.6	28

JASON D SLINKER

#	Article	IF	CITATIONS
37	Ionic Organic Small Molecules as Hosts for Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2018, 10, 24699-24707.	4.0	25
38	Temperature Dependence of Electrochemical DNA Charge Transport: Influence of a Mismatch. Analytical Chemistry, 2013, 85, 1462-1467.	3.2	24
39	Circumventing Dedicated Electrolytes in Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906715.	7.8	23
40	The Effect of the Dielectric Constant and Ion Mobility in Lightâ€Emitting Electrochemical Cells. ChemPlusChem, 2018, 83, 266-273.	1.3	22
41	The Electronic Influence of Abasic Sites in DNA. Journal of the American Chemical Society, 2015, 137, 11150-11155.	6.6	20
42	Understanding the superior temperature stability of iridium light-emitting electrochemical cells. Materials Horizons, 2017, 4, 657-664.	6.4	18
43	Luminescent properties of a 3,5-diphenylpyrazole bridged Pt(ii) dimer. Dalton Transactions, 2019, 48, 9684-9691.	1.6	18
44	Stable and Bright Electroluminescent Devices utilizing Emissive 0D Perovskite Nanocrystals Incorporated in a 3D CsPbBr ₃ Matrix. Advanced Materials, 2022, 34, .	11.1	18
45	Electrochemistry of DNA Monolayers Modified With a Perylenediimide Base Surrogate. Journal of Physical Chemistry C, 2014, 118, 29084-29090.	1.5	17
46	Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer Perovskite Device. Advanced Functional Materials, 2021, 31, 2102006.	7.8	17
47	Bright Single-Layer Perovskite Host–lonic Guest Light-Emitting Electrochemical Cells. Chemistry of Materials, 2021, 33, 1201-1212.	3.2	15
48	Solvent Toolkit for Electrochemical Characterization of Hybrid Perovskite Films. Analytical Chemistry, 2017, 89, 9649-9653.	3.2	14
49	Following anticancer drug activity in cell lysates with DNA devices. Biosensors and Bioelectronics, 2018, 119, 1-9.	5.3	14
50	Temperature dependence of tris(2,2′-bipyridine) ruthenium (II) device characteristics. Journal of Applied Physics, 2004, 95, 4381-4384.	1.1	12
51	Enhanced emission from fcc fluorescent photonic crystals. Physical Review B, 2008, 77, .	1.1	11
52	Using DNA devices to track anticancer drug activity. Biosensors and Bioelectronics, 2016, 80, 647-653.	5.3	10
53	Electrical characterization of ZnO-coated nanospring ensemble by impedance spectroscopy: probing the effect of thermal annealing. Nanotechnology, 2019, 30, 234006.	1.3	10
54	Straightforward fabrication of sub-10 nm nanogap electrode pairs by electron beam lithography. Precision Engineering, 2022, 77, 275-280.	1.8	8

JASON D SLINKER

#	Article	IF	CITATIONS
55	Application of Electrochemical Devices to Characterize the Dynamic Actions of Helicases on DNA. Analytical Chemistry, 2018, 90, 2178-2185.	3.2	7
56	Leveraging a Stable Perovskite Composite to Satisfy Blue Electroluminescence Standards. , 2021, 3, 1357-1362.		6
57	Single-Particle Spectroscopy as a Versatile Tool to Explore Lower-Dimensional Structures of Inorganic Perovskites. ACS Energy Letters, 2021, 6, 3695-3708.	8.8	6
58	Electrochemical characterization of halide perovskites: Stability & doping. Materials Today Advances, 2022, 13, 100213.	2.5	5
59	Detecting Attomolar DNA-Damaging Anticancer Drug Activity in Cell Lysates with Electrochemical DNA Devices. ACS Sensors, 2021, 6, 2622-2629.	4.0	4
60	Enhancement of the Electrical Properties of DNA Molecular Wires through Incorporation of Perylenediimide DNA Base Surrogates. ChemPlusChem, 2019, 84, 416-419.	1.3	3
61	Machine Learning for Estimating Electron Transfer Rates From Square Wave Voltammetry. ChemPlusChem, 2021, , .	1.3	2
62	The Use of Additives in Ionic Transition Metal Complex Light-Emitting Electrochemical Cells. , 2017, , 93-119.		1
63	Perovskite Lightâ€Emitting Electrochemical Cells: Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives (Advanced Optical Materials 13/2020). Advanced Optical Materials, 2020, 8, 2070052.	3.6	1
64	Re-Examining Open-Circuit Voltage in Dilute-Donor Organic Photovoltaics. Journal of Physical Chemistry C, 2022, 126, 9275-9283.	1.5	1
65	Degradation of Ru(bpy)32+-based OLEDs. Materials Research Society Symposia Proceedings, 2004, 846, DD11.11.1.	0.1	0
66	Degradation in iTMC OLEDs. Materials Research Society Symposia Proceedings, 2007, 1029, 1.	0.1	0
67	Measuring light-emitting diodes with a scanner for radiant flux and colour characterization. Measurement Science and Technology, 2013, 24, 055101.	1.4	0
68	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices (Advanced Optical) Tj ETQ	q0 0 0 rgB1	/Oyerlock 1(

	Pure Blue Electroluminescence: Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer Perovskite Device (Adv. Funct. Mater. 31/2021). Advanced Functional Materials, 2021, 31, 2170228.	7.8	0	
--	---	-----	---	--