Xiaobin Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11194132/publications.pdf

Version: 2024-02-01

		159525	155592
56	4,055	30	55
papers	citations	h-index	g-index
F.0	50	50	4444
59	59	59	4444
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Ozone and aerosols over the Tibetan Plateau. , 2022, , 287-302.		2
2	Measurement report: Long-term variations in surface NO _{and SO_{and SO₂ mixing ratios from 2006 to 2016 at a background site in the Yangtze River Delta region, China. Atmospheric Chemistry and Physics, 2022, 22, 1015-1033.}}	1.9	6
3	Temporal Variation of NO2 and HCHO Vertical Profiles Derived from MAX-DOAS Observation in Summer at a Rural Site of the North China Plain and Ozone Production in Relation to HCHO/NO2 Ratio. Atmosphere, 2022, 13, 860.	1.0	4
4	Measurement report: Variations in surface SO ₂ and NO _{<i>x</i>} mixing ratios from 2004 to 2016 at a background site in the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 7071-7085.	1.9	1
5	Recent advances in studies of ozone pollution and impacts in China: A short review. Current Opinion in Environmental Science and Health, 2021, 19, 100225.	2.1	21
6	Aerosol Promotes Peroxyacetyl Nitrate Formation During Winter in the North China Plain. Environmental Science & Environmental	4.6	20
7	Explosive morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on aerosol formation. Environmental Pollution, 2020, 257, 113621.	3.7	27
8	Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air. Environmental Science & Environmental Science & 2020, 54, 15710-15721.	4.6	37
9	Understanding the formation of high-ozone episodes at Raoyang, a rural site in the north China plain. Atmospheric Environment, 2020, 240, 117797.	1.9	7
10	Measuring the Vertical Profiles of Aerosol Extinction in the Lower Troposphere by MAX-DOAS at a Rural Site in the North China Plain. Atmosphere, 2020, 11, 1037.	1.0	3
11	Impact of volatile organic compounds and photochemical activities on particulate matters during a high ozone episode at urban, suburb and regional background stations in Beijing. Atmospheric Environment, 2020, 236, 117629.	1.9	16
12	Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment, 2020, 735, 139542.	3.9	516
13	Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain. Atmospheric Chemistry and Physics, 2020, 20, 5887-5897.	1.9	40
14	Zonal Similarity of Longâ€√erm Changes and Seasonal Cycles of Baseline Ozone at Northern Midlatitudes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031908.	1.2	27
15	Wet deposition of sulfur and nitrogen at Mt. Emei in the West China Rain Zone, southwestern China: Status, inter-annual changes, and sources. Science of the Total Environment, 2020, 713, 136676.	3.9	17
16	Long-term changes of regional ozone in China: implications for human health and ecosystem impacts. Elementa, 2020, 8, .	1,1	48
17	Multi-decadal surface ozone trends at globally distributed remote locations. Elementa, 2020, 8, .	1.1	54
18	Measurement report: Long-term variations in carbon monoxide at a background station in China's Yangtze River Delta region. Atmospheric Chemistry and Physics, 2020, 20, 15969-15982.	1.9	9

#	Article	IF	CITATIONS
19	Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in theÂNorthÂChinaÂPlain. Earth and Space Science, 2019, 6, 1675-1693.	1.1	44
20	NH ₃ -promoted hydrolysis of NO ₂ induces explosive growth in HONO. Atmospheric Chemistry and Physics, 2019, 19, 10557-10570.	1.9	38
21	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	1.9	97
22	Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. Journal of Environmental Sciences, 2019, 77, 291-302.	3.2	41
23	Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 167-184.	1.9	99
24	Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability. Atmospheric Chemistry and Physics, 2018, 18, 773-798.	1.9	56
25	Lower tropospheric ozone over the North China Plain: variability and trends revealed by IASI satellite observations for 2008–2016. Atmospheric Chemistry and Physics, 2018, 18, 16439-16459.	1.9	23
26	First simultaneous measurements of peroxyacetyl nitrate (PAN) and ozone at Nam Co in the central Tibetan Plateau: impacts from the PBL evolution and transport processes. Atmospheric Chemistry and Physics, 2018, 18, 5199-5217.	1.9	32
27	Severe Surface Ozone Pollution in China: A Global Perspective. Environmental Science and Technology Letters, 2018, 5, 487-494.	3.9	570
28	Spatio-temporal variations in SO2 and NO2 emissions caused by heating over the Beijing-Tianjin-Hebei Region constrained by an adaptive nudging method with OMI data. Science of the Total Environment, 2018, 642, 543-552.	3.9	41
29	Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences. Environmental Pollution, 2018, 234, 29-38.	3.7	49
30	Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elementa, $2018, 6, .$	1.1	167
31	Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elementa, 2018, 6, 1.	1.1	196
32	Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa, 2018, 6, .	1.1	212
33	Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. Atmospheric Environment, 2017, 152, 123-145.	1.9	82
34	Lower tropospheric distributions of O ₃ and aerosol over Raoyang, a rural site in the North China Plain. Atmospheric Chemistry and Physics, 2017, 17, 3891-3903.	1.9	35
35	Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .	1.1	172
36	Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain. Atmospheric Chemistry and Physics, 2016, 16, 10441-10454.	1.9	72

#	Article	IF	Citations
37	Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China $\hat{a} \in \text{Part 1: Overall trends and characteristics. Atmospheric Chemistry and Physics, 2016, 16, 6191-6205.}$	1.9	104
38	Significant increase of surface ozone at a rural site, north of eastern China. Atmospheric Chemistry and Physics, 2016, 16, 3969-3977.	1.9	259
39	Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century. PLoS ONE, 2015, 10, e0126235.	1.1	53
40	Two-year measurements of surface ozone at Dangxiong, a remote highland site in the Tibetan Plateau. Journal of Environmental Sciences, 2015, 31, 133-145.	3.2	33
41	Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: Role of photochemical and meteorological processes. Journal of Environmental Sciences, 2014, 26, 83-96.	3.2	31
42	Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Science of the Total Environment, 2014, 499, 228-237.	3.9	136
43	Coupling of comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry: Application to the identification of atmospheric volatile organic compounds. Journal of Chromatography A, 2014, 1361, 229-239.	1.8	15
44	Pollution plumes observed by aircraft over North China during the IPAC-NC field campaign. Science Bulletin, 2013, 58, 4329-4336.	1.7	4
45	Observed levels and trends of gaseous SO2 and HNO3 at Mt. Waliguan, China: Results from 1997 to 2009. Journal of Environmental Sciences, 2013, 25, 726-734.	3.2	11
46	Darkening of the mid-Himalaya glaciers since 2000 and the potential causes. Environmental Research Letters, 2012, 7, 014021.	2.2	81
47	A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Advances in Atmospheric Sciences, 2012, 29, 1006-1026.	1.9	144
48	Characteristics of precipitation chemistry at Lushan Mountain, East China: 1992–2009. Environmental Science and Pollution Research, 2012, 19, 2329-2343.	2.7	13
49	Significant downward trend of SO2 observed from 2005 to 2010 at a background station in the Yangtze Delta region, China. Science China Chemistry, 2012, 55, 1451-1458.	4.2	24
50	Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China: Effectiveness of control measures. Journal of Environmental Sciences, 2012, 24, 34-49.	3.2	65
51	Trends of Tropospheric Ozone over China Based on Satellite Data (1979–2005). Advances in Climate Change Research, 2011, 2, 43-48.	2.1	22
52	Background concentrations of reactive gases and the impacts of long-range transport at the Jinsha regional atmospheric background station. Science China Earth Sciences, 2011, 54, 1604-1613.	2.3	14
53	10Be/7Be implies the contribution of stratosphere-troposphere transport to the winter-spring surface O3 variation observed on the Tibetan Plateau. Science Bulletin, 2011, 56, 84-88.	1.7	22
54	Characteristics of gaseous pollutants at Jinsha, a remote mountain site in Central China. Scientia Sinica Chimica, 2011, 41, 136-144.	0.2	4

XIAOBIN XU

#	Article	IF	CITATIONS
55	Trends of the precipitation acidity over China during 1992–2006. Science Bulletin, 2010, 55, 1800-1807.	1.7	77
56	Characteristics of gaseous pollutants at Gucheng, a rural site southwest of Beijing. Journal of Geophysical Research, 2009, 114, .	3.3	61