
Michaela Kendall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11193355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fuel cell development for New Energy Vehicles (NEVs) and clean air in China. Progress in Natural Science: Materials International, 2018, 28, 113-120.	1.8	99
2	Platelet aggregation induced by polystyrene and platinum nanoparticles is dependent on surface area. RSC Advances, 2018, 8, 37789-37794.	1.7	11
3	Hydrogen vehicles in China: Replacing the Western Model. International Journal of Hydrogen Energy, 2017, 42, 30179-30185.	3.8	44
4	Long-term monitoring for nanomedicine implants and drugs. Nature Nanotechnology, 2016, 11, 206-210.	15.6	52
5	A truncating TPO mutation (Y55X) in patients with hypothyroidism and total iodide organification defect. Endocrine Research, 2015, 40, 146-150.	0.6	8
6	Nanoparticles modulate surfactant protein A and D mediated protection against influenza A infection <i>in vitro</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140049.	1.8	20
7	Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140100.	1.8	18
8	â€~Bio-nano interactions: new tools, insights and impacts': summary of the Royal Society discussion meeting. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140162.	1.8	28
9	Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles. Nanotoxicology, 2015, 9, 952-962.	1.6	28
10	A nonsense thyrotropin receptor gene mutation (R609X) is associated with congenital hypothyroidism and heart defects. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 1101-5.	0.4	10
11	A deletion including exon 2 of the TSHR gene is associated with thyroid dysgenesis and severe congenital hypothyroidism. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 731-5.	0.4	10
12	An essential splice site mutation (c.317+1G>A) in the TSHR gene leads to severe thyroid dysgenesis. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 1021-5.	0.4	7
13	A common thyroid peroxidase gene mutation (G319R) in Turkish patients with congenital hypothyroidism could be due to a founder effect. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 383-7.	0.4	12
14	A truncating DUOX2 mutation (R434X) causes severe congenital hypothyroidism. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 323-7.	0.4	17
15	One Base Deletion (c.2422delT) in the TPO Gene Causes Severe Congenital Hypothyroidism. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2014, 6, 169-173.	0.4	13
16	Atmospheric Resource Impact Assessment (ARIA). Progress in Physical Geography, 2014, 38, 414-430.	1.4	5
17	Novel truncating thyroglobulin gene mutations associated with congenital hypothyroidism. Endocrine, 2014, 45, 206-212.	1.1	25
18	Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles. Nanotoxicology, 2013, 7, 963-973.	1.6	54

MICHAELA KENDALL

#	Article	IF	CITATIONS
19	Thyroid dyshormonogenesis is mainly caused by <i><scp>TPO</scp></i> mutations in consanguineous community. Clinical Endocrinology, 2013, 79, 275-281.	1.2	47
20	The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design. BioNanoMaterials, 2013, 14, .	1.4	27
21	Mild and severe congenital primary hypothyroidism in two patients by thyrotropin receptor (TSHR) gene mutation. Journal of Pediatric Endocrinology and Metabolism, 2012, 25, 1153-6.	0.4	12
22	TSHR is the main causative locus in autosomal recessively inherited thyroid dysgenesis. Journal of Pediatric Endocrinology and Metabolism, 2012, 25, 419-26.	0.4	27
23	Health impact and toxicological effects of nanomaterials in the lung. Respirology, 2012, 17, 743-758.	1.3	66
24	Personal Exposures to Traffic-Related Air Pollution and Acute Respiratory Health among Bronx Schoolchildren with Asthma. Environmental Health Perspectives, 2011, 119, 559-565.	2.8	146
25	Airborne particulate matter (PM2.5 and PM10) and associated metals in urban Turkey. Air Quality, Atmosphere and Health, 2011, 4, 235-242.	1.5	19
26	Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology. Nanotoxicology, 2011, 5, 55-65.	1.6	72
27	Adhesion of Cells, Viruses and Nanoparticles. , 2011, , .		26
28	Communicating the value of atmospheric services. Meteorological Applications, 2010, 17, 243-250.	0.9	31
29	Novel <i>TSHR</i> mutations in consanguineous families with congenital nongoitrous hypothyroidism. Clinical Endocrinology, 2010, 73, 671-677.	1.2	28
30	Personal exposures to traffic-related particle pollution among children with asthma in the South Bronx, NY. Journal of Exposure Science and Environmental Epidemiology, 2010, 20, 446-456.	1.8	48
31	Nanoparticles Adhering to Cells; Toxicity Effects. , 2010, , 241-264.		1
32	Heavy Metal Content of Plant Species along Nilüfer Stream in Industrialized Bursa City, Turkey. Water, Air, and Soil Pollution, 2008, 195, 275-284.	1.1	23
33	Fine airborne urban particles (PM _{2.5}) sequester lung surfactant and amino acids from human lung lavage. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1053-L1058.	1.3	45
34	Urban PM2.5Surface Chemistry and Interactions with Bronchoalveolar Lavage Fluid. Inhalation Toxicology, 2004, 16, 115-128.	0.8	31
35	Molecular Adsorption at Particle Surfaces: A PM Toxicity Mediation Mechanism. Inhalation Toxicology, 2004, 16, 99-105.	0.8	55
36	Airborne particulate-associated polyaromatic hydrocarbons, n-alkanes, elemental and organic carbon in three European cities. Journal of Environmental Monitoring, 2002, 4, 890-896.	2.1	21

MICHAELA KENDALL

#	Article	IF	CITATIONS
37	Lung lining liquid modifies PM _{2.5} in favor of particle aggregation: a protective mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L109-L114.	1.3	46
38	Investigation of fine atmospheric particle surfaces and lung lining fluid interactions using XPS. Applied Surface Science, 2001, 178, 27-36.	3.1	25
39	The spatial and temporal variation of particulate matter within the home. Journal of Exposure Science and Environmental Epidemiology, 2000, 10, 307-314.	1.8	28