
Thomas R Cech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telomerase Catalytic Subunit Homologs from Fission Yeast and Human. Science, 1997, 277, 955-959.	12.6	2,138
2	Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell, 1982, 31, 147-157.	28.9	2,078
3	The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell, 2014, 157, 77-94.	28.9	2,001
4	Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell, 1989, 59, 871-880.	28.9	1,198
5	Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase. Science, 1997, 276, 561-567.	12.6	1,172
6	Inhibition of telomerase by G-quartet DMA structures. Nature, 1991, 350, 718-720.	27.8	1,080
7	Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and Humans. Science, 2001, 292, 1171-1175.	12.6	923
8	Self-Splicing of Group I Introns. Annual Review of Biochemistry, 1990, 59, 543-568.	11.1	866
9	In vitro splicing of the ribosomal RNA precursor of tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell, 1981, 27, 487-496.	28.9	846
10	The chemical repertoire of natural ribozymes. Nature, 2002, 418, 222-228.	27.8	656
11	The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature, 2007, 445, 506-510.	27.8	609
12	How do IncRNAs regulate transcription?. Science Advances, 2017, 3, eaao2110.	10.3	542
13	RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure. Cell, 2016, 165, 1267-1279.	28.9	520
14	The generality of self-splicing RNA: Relationship to nuclear mRNA splicing. Cell, 1986, 44, 207-210.	28.9	493
15	Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature, 1997, 385, 744-747.	27.8	484
16	Conserved sequences and structures of group I introns: building an active site for RNA catalysis — a review. Gene, 1988, 73, 259-271.	2.2	467
17	Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nature Structural and Molecular Biology, 2004, 11, 1223-1229.	8.2	413
18	Promiscuous RNA binding by Polycomb repressive complex 2. Nature Structural and Molecular Biology, 2013, 20, 1250-1257.	8.2	404

#	Article	IF	CITATIONS
19	Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature, 1993, 361, 85-88.	27.8	403
20	Beginning to Understand the End of the Chromosome. Cell, 2004, 116, 273-279.	28.9	400
21	Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension <i>in vitro</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10864-10869.	7.1	351
22	Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry, 1990, 29, 10159-10171.	2.5	329
23	STRUCTURAL BIOLOGY: Enhanced: The Ribosome Is a Ribozyme. Science, 2000, 289, 878-879.	12.6	328
24	Finding the end: recruitment of telomerase to telomeres. Nature Reviews Molecular Cell Biology, 2013, 14, 69-82.	37.0	326
25	A Preorganized Active Site in the Crystal Structure of the Tetrahymena Ribozyme. , 1998, 282, 259-264.		300
26	Reversing Time: Origin of Telomerase. Cell, 1998, 92, 587-590.	28.9	298
27	The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature, 2012, 492, 285-289.	27.8	298
28	RNA Seeds Higher-Order Assembly of FUS Protein. Cell Reports, 2013, 5, 918-925.	6.4	291
29	Structural conventions for group I introns. Nucleic Acids Research, 1987, 15, 7217-7221.	14.5	290
30	The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature, 1986, 324, 429-433.	27.8	287
31	Representation of the secondary and tertiary structure of group I introns. Nature Structural and Molecular Biology, 1994, 1, 273-280.	8.2	287
32	Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage–ligation reaction. Nature, 1983, 301, 578-583.	27.8	286
33	Peptide bond formation by in vitro selected ribozymes. Nature, 1997, 390, 96-100.	27.8	280
34	Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature, 1984, 308, 820-826.	27.8	278
35	The β subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell, 1993, 74, 875-885.	28.9	267
36	Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature, 1994, 371, 619-622.	27.8	266

#	Article	IF	CITATIONS
37	Telomerase and the maintenance of chromosome ends. Current Opinion in Cell Biology, 1999, 11, 318-324.	5.4	263
38	Two Modes of Survival of Fission Yeast Without Telomerase. Science, 1998, 282, 493-496.	12.6	259
39	Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature, 1999, 401, 177-180.	27.8	256
40	<i>TERT</i> promoter mutations and telomerase reactivation in urothelial cancer. Science, 2015, 347, 1006-1010.	12.6	255
41	Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes and Development, 2015, 29, 1095-1105.	5.9	250
42	The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. Rna, 2015, 21, 2007-2022.	3.5	248
43	GAAA Tetraloop and Conserved Bulge Stabilize Tertiary Structure of a Group I Intron Domain. Journal of Molecular Biology, 1994, 236, 49-63.	4.2	247
44	RNA splicing: Three themes with variations. Cell, 1983, 34, 713-716.	28.9	238
45	Minor-Groove Recognition of Double-Stranded RNA by the Double-Stranded RNA-Binding Domain from the RNA-Activated Protein Kinase PKRâ€. Biochemistry, 1996, 35, 9983-9994.	2.5	232
46	One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell, 1986, 47, 207-216.	28.9	226
47	Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature, 2011, 474, 399-402.	27.8	220
48	RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature, 1992, 358, 123-128.	27.8	215
49	From The Cover: Yeast telomerase RNA: A flexible scaffold for protein subunits. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10024-10029.	7.1	211
50	Reverse self-splicing of the tetrahymena group I intron: Implication for the directionality of splicing and for intron transposition. Cell, 1989, 57, 335-345.	28.9	198
51	Ribozyme recognition of RNA by tertiary interactions with specific ribose 2′-OH groups. Nature, 1991, 350, 628-631.	27.8	196
52	Human POT1 Facilitates Telomere Elongation by Telomerase. Current Biology, 2003, 13, 942-946.	3.9	195
53	New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing. Journal of Molecular Biology, 1986, 189, 143-165.	4.2	194
54	FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes and Development, 2012, 26, 2690-2695.	5.9	192

Тномаѕ R Сесн

#	Article	IF	CITATIONS
55	Toward a Consensus on the Binding Specificity and Promiscuity of PRC2 for RNA. Molecular Cell, 2015, 57, 552-558.	9.7	190
56	A second catalytic metal ion in a group I ribozyme. Nature, 1997, 388, 805-808.	27.8	186
57	Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nature Structural and Molecular Biology, 2017, 24, 1028-1038.	8.2	186
58	Targeting of Polycomb Repressive Complex 2 to RNA by Short Repeats of Consecutive Guanines. Molecular Cell, 2017, 65, 1056-1067.e5.	9.7	185
59	DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature, 2003, 426, 198-203.	27.8	182
60	Biochemical Properties and Biological Functions of FET Proteins. Annual Review of Biochemistry, 2015, 84, 355-379.	11.1	173
61	Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nature Structural and Molecular Biology, 2006, 13, 218-225.	8.2	169
62	The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena. Cell, 1981, 23, 467-476.	28.9	168
63	Mutation of the <i>TERT</i> promoter, switch to active chromatin, and monoallelic <i>TERT</i> expression in multiple cancers. Genes and Development, 2015, 29, 2219-2224.	5.9	168
64	Cloning and expression of genes for the Oxytricha telomere-binding protein: Specific subunit interactions in the telomeric complex. Cell, 1991, 67, 807-814.	28.9	162
65	POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO Journal, 2010, 29, 924-933.	7.8	160
66	The RNA Worlds in Context. Cold Spring Harbor Perspectives in Biology, 2012, 4, a006742-a006742.	5.5	160
67	Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres. Cell, 2016, 166, 1188-1197.e9.	28.9	158
68	POT1 Stimulates RecQ Helicases WRN and BLM to Unwind Telomeric DNA Substrates. Journal of Biological Chemistry, 2005, 280, 32069-32080.	3.4	157
69	RNA editing: World's smallest introns?. Cell, 1991, 64, 667-669.	28.9	156
70	Structural Basis of the Enhanced Stability of a Mutant Ribozyme Domain and a Detailed View of RNA–Solvent Interactions. Structure, 2001, 9, 221-231.	3.3	154
71	Human Pot1 (Protection of Telomeres) Protein: Cytolocalization, Gene Structure, and Alternative Splicing. Molecular and Cellular Biology, 2002, 22, 8079-8087.	2.3	153
72	Cross-linking of DNA with trimethylpsoralen is a probe for chromatin structure. Cell, 1977, 11, 631-640.	28.9	150

Тномаѕ R Сесн

#	Article	IF	CITATIONS
73	Atomic level architecture of group I introns revealed. Trends in Biochemical Sciences, 2006, 31, 41-51.	7.5	149
74	RNA as an Enzyme. Scientific American, 1986, 255, 64-75.	1.0	147
75	Switching Human Telomerase On and Off with hPOT1 Protein in Vitro. Journal of Biological Chemistry, 2005, 280, 20449-20456.	3.4	143
76	Chromatin structure of the molecular ends of oxytricha macronuclear DNA: phased nucleosomes and a telomeric complex. Cell, 1984, 38, 501-510.	28.9	141
77	DNA cleavage catalysed by the ribozyme from Tetrahymena. Nature, 1990, 344, 405-409.	27.8	139
78	Protection of Telomeres by the Ku Protein in Fission Yeast. Molecular Biology of the Cell, 2000, 11, 3265-3275.	2.1	138
79	Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nature Reviews Molecular Cell Biology, 2021, 22, 283-298.	37.0	137
80	Life at the End of the Chromosome: Telomeres and Telomerase. Angewandte Chemie - International Edition, 2000, 39, 34-43.	13.8	133
81	A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes and Development, 2002, 16, 2800-2812.	5.9	128
82	Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Research, 2014, 42, 8565-8577.	14.5	120
83	Intermolecular exon ligation of the rRNA precursor of tetrahymena: Oligonucleotides can function as 5′ exons. Cell, 1985, 43, 431-437.	28.9	119
84	Chromatin structure at the replication origins and transcription-initiation regions of the ribosomal RNA genes of tetrahymena. Cell, 1984, 36, 933-942.	28.9	116
85	Energetics and Cooperativity of Tertiary Hydrogen Bonds in RNA Structure. Biochemistry, 1999, 38, 8691-8702.	2.5	116
86	Self-Splicing RNA: Implications for Evolution. International Review of Cytology, 1985, 93, 3-22.	6.2	114
87	Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5′ splice site domain. Cell, 1995, 82, 221-230.	28.9	114
88	Telomerase and chromosome end maintenance. Current Opinion in Genetics and Development, 1998, 8, 226-232.	3.3	113
89	In vitro splicing of the ribosomal RNA precursor in nuclei of tetrahymena. Cell, 1980, 19, 331-338.	28.9	111
90	Telomerase RNA Bound by Protein Motifs Specific to Telomerase Reverse Transcriptase. Molecular Cell, 2000, 6, 493-499.	9.7	110

#	Article	IF	CITATIONS
91	Low abundance of telomerase in yeast: Implications for telomerase haploinsufficiency. Rna, 2006, 12, 1721-1737.	3.5	108
92	Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry, 1990, 29, 10172-10180.	2.5	107
93	Triple-helix structure in telomerase RNA contributes to catalysis. Nature Structural and Molecular Biology, 2008, 15, 634-640.	8.2	107
94	Ribozymes, the first 20 years. Biochemical Society Transactions, 2002, 30, 1162-1166.	3.4	106
95	Crawling Out of the RNA World. Cell, 2009, 136, 599-602.	28.9	105
96	Functional interaction between telomere protein TPP1 and telomerase. Genes and Development, 2010, 24, 613-622.	5.9	105
97	Replication of the extrachromosomal ribosomal RNA genes of Tetrahymena thermophilia. Nucleic Acids Research, 1981, 9, 3531-3543.	14.5	104
98	Nucleic acid-binding specificity of human FUS protein. Nucleic Acids Research, 2015, 43, 7535-7543.	14.5	104
99	Essential Regions of Saccharomyces cerevisiae Telomerase RNA: Separate Elements for Est1p and Est2p Interaction. Molecular and Cellular Biology, 2002, 22, 2366-2374.	2.3	103
100	RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nature Genetics, 2020, 52, 931-938.	21.4	99
101	Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes and Development, 2017, 31, 59-71.	5.9	96
102	A Lifelong Passion for All Things Ribonucleic. Cell, 2018, 175, 14-17.	28.9	95
103	Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chemistry and Biology, 1998, 5, 539-553.	6.0	93
104	Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nature Structural and Molecular Biology, 2016, 23, 286-292.	8.2	93
105	The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene, 1993, 135, 33-36.	2.2	92
106	Multiple Folding Pathways for the P4â^'P6 RNA Domain. Biochemistry, 2000, 39, 12465-12475.	2.5	91
107	Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell, 1991, 67, 1007-1019.	28.9	88
108	Identification of human TERT elements necessary for telomerase recruitment to telomeres. ELife, 2014, 3, .	6.0	85

#	Article	IF	CITATIONS
109	Mitochondrial telomeres: Surprising diversity of repeated telomeric DNA sequences among six species of Tetrahymena. Cell, 1988, 52, 367-374.	28.9	83
110	The intervening sequence excised from the ribosomal RNA precursor ofTetrahymenacontains a 5′-terminal guanosine residue not encoded by the DNA. Nucleic Acids Research, 1982, 10, 2823-2838.	14.5	82
111	Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor. Cell, 1986, 45, 167-176.	28.9	82
112	A Mutant of Tetrahymena Telomerase Reverse Transcriptase with Increased Processivity. Journal of Biological Chemistry, 2000, 275, 24199-24207.	3.4	82
113	Mutually Exclusive Binding of Telomerase RNA and DNA by Ku Alters Telomerase Recruitment Model. Cell, 2012, 148, 922-932.	28.9	81
114	A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biology, 2015, 16, 231.	8.8	81
115	A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nature Structural and Molecular Biology, 2005, 12, 1072-1077.	8.2	80
116	The telomeres of the linear mitochondrial DNA of tetrahymena thermophila consist of 53 bp tandem repeats. Cell, 1986, 46, 873-883.	28.9	79
117	Cooperative Binding of Single-Stranded Telomeric DNA by the Pot1 Protein of Schizosaccharomyces pombe. Biochemistry, 2002, 41, 14560-14568.	2.5	79
118	Dynamics of Thermal Motions within a Large Catalytic RNA Investigated by Cross-linking with Thiolâ^'Disulfide Interchange. Journal of the American Chemical Society, 1997, 119, 6259-6268.	13.7	77
119	Sites of circularization of theTetrahymenarRNA IVS are determined by sequence and influenced by position and secondary structure. Nucleic Acids Research, 1985, 13, 8389-8408.	14.5	76
120	The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science, 2020, 368, 1081-1085.	12.6	76
121	Conserved RNA-binding specificity of polycomb repressive complex 2 is achieved by dispersed amino acid patches in EZH2. ELife, 2017, 6, .	6.0	76
122	RNA Tertiary Folding Monitored by Fluorescence of Covalently Attached Pyreneâ€. Biochemistry, 1999, 38, 14224-14237.	2.5	75
123	A hammerhead ribozyme allows synthesis of a new form of theTetrahymenaribozyme homogeneous in length with a 3' end blocked for transesterification. Nucleic Acids Research, 1991, 19, 3875-3880.	14.5	74
124	An electron microscopic study of mouse foldback DNA. Cell, 1975, 5, 429-446.	28.9	73
125	Modulation of telomerase activity by telomere DNA-binding proteins in <i>Oxytricha</i> . Genes and Development, 1998, 12, 1504-1514.	5.9	71
126	Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes and Development, 2018, 32, 794-805.	5.9	70

#	Article	IF	CITATIONS
127	Reversibility of cyclization of the tetrahymena rRNA intervening sequence: implication for the mechanism of splice site choice. Cell, 1985, 42, 639-648.	28.9	69
128	Many disease-associated variants of hTERT retain high telomerase enzymatic activity. Nucleic Acids Research, 2013, 41, 8969-8978.	14.5	68
129	Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes. Cell Reports, 2017, 21, 3700-3707.	6.4	68
130	Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Bioscience Reports, 1990, 10, 239-261.	2.4	66
131	How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proceedings of the United States of America, 2010, 107, 651-656.	7.1	66
132	N-terminal Domain of Yeast Telomerase Reverse Transcriptase: Recruitment of Est3p to the Telomerase Complex. Molecular Biology of the Cell, 2003, 14, 1-13.	2.1	65
133	Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nature Communications, 2017, 8, 1075.	12.8	64
134	Selection of circularization sites in a group I IVS RNA requires multiple alignments of an internal template-like sequence. Cell, 1987, 50, 951-961.	28.9	62
135	Assembly and self-association of Oxytricha telomeric nucleoprotein complexes. Cell, 1989, 59, 719-728.	28.9	61
136	A self-splicing group I intron in the nuclear pre-rRNA of the green alga,Ankistrodesmus stipitatus. Nucleic Acids Research, 1991, 19, 4429-4436.	14.5	60
137	An early transition state for folding of the P4-P6 RNA domain. Rna, 2001, 7, 161-166.	3.5	60
138	Sequence requirements for self-splicing of theTetrahymena thermophilapre-ribosomal RNA. Nucleic Acids Research, 1985, 13, 1871-1889.	14.5	59
139	The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nature Structural and Molecular Biology, 2011, 18, 1371-1375.	8.2	59
140	Characterization of the most rapidly renaturing sequences in mouse main-band DNA. Journal of Molecular Biology, 1973, 81, 299-325.	4.2	58
141	Mutation in TERT separates processivity from anchor-site function. Nature Structural and Molecular Biology, 2008, 15, 870-872.	8.2	58
142	Synthesis and Characterization of an RNA Dinucleotide Containing a 3â€~-S-Phosphorothiolate Linkage. Journal of the American Chemical Society, 1996, 118, 10341-10350.	13.7	56
143	Exocyclic Amine of the Conserved G·U Pair at the Cleavage Site of theTetrahymenaRibozyme Contributes to 5'-Splice Site Selection and Transition State Stabilizationâ€. Biochemistry, 1996, 35, 1201-1211.	2.5	56
144	Oxytrichatelomeric nucleoprotein complexes reconstituted with synthetic DNA. Nucleic Acids Research, 1989, 17, 4235-4253.	14.5	55

#	Article	IF	CITATIONS
145	TheEuplotesLa Motif Protein p43 Has Properties of a Telomerase-Specific Subunitâ€. Biochemistry, 2003, 42, 5736-5747.	2.5	55
146	Sharing Publication-Related Data and Materials: Responsibilities of Authorship in the Life Sciences. Plant Physiology, 2003, 132, 19-24.	4.8	55
147	Self-splicing and Enzymatic Activity of an Intervening Sequence RNA fromTetrahymena(Nobel Lecture). Angewandte Chemie International Edition in English, 1990, 29, 759-768.	4.4	53
148	Phylogenetic relationships and altered genome structures amongTetrahymenamitochondrial DNAs. Nucleic Acids Research, 1988, 16, 327-346.	14.5	52
149	Molecular cloning of telomere-binding protein gens fromStylonchia mytilis. Nucleic Acids Research, 1991, 19, 5515-5518.	14.5	52
150	Quantifying the energetic interplay of RNA tertiary and secondary structure interactions. Rna, 1999, 5, 1665-1674.	3.5	52
151	Local RNA structural changes induced by crystallization are revealed by SHAPE. Rna, 2007, 13, 536-548.	3.5	51
152	Chromatin structure of the ribosomal RNA genes of Tetrahymena thermophila as analyzed by trimethylpsoralen crosslinking in vivo. Journal of Molecular Biology, 1980, 136, 395-416.	4.2	49
153	TetrahymenaTelomerase Is Active as a Monomer. Molecular Biology of the Cell, 2003, 14, 4794-4804.	2.1	49
154	Expression of a RecQ Helicase Homolog Affects Progression through Crisis in Fission Yeast Lacking Telomerase. Journal of Biological Chemistry, 2005, 280, 5249-5257.	3.4	48
155	FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Molecular Biology of the Cell, 2014, 25, 2571-2578.	2.1	48
156	5′ exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5′ splice site in the 3′ exon. Journal of Molecular Biology, 1987, 196, 49-60.	4.2	47
157	Joining the Two Domains of a Group I Ribozyme to Form the Catalytic Core. Science, 1997, 275, 847-849.	12.6	47
158	Regulation of histone methylation by automethylation of PRC2. Genes and Development, 2019, 33, 1416-1427.	5.9	47
159	Hammerhead nailed down. Nature, 1994, 372, 39-40.	27.8	46
160	A template-proximal RNA paired element contributes to Saccharomyces cerevisiae telomerase activity. Rna, 2003, 9, 1323-1332.	3.5	45
161	EuplotesTelomerase:Â Evidence for Limited Base-Pairing during Primer Elongation and dGTP as an Effector of Translocationâ€. Biochemistry, 1998, 37, 5162-5172.	2.5	44
162	Nurturing interdisciplinary research. Nature Structural and Molecular Biology, 2004, 11, 1166-1169.	8.2	44

#	Article	IF	CITATIONS
163	G-strings at chromosome ends. Nature, 1988, 332, 777-778.	27.8	43
164	Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. Journal of Molecular Biology, 1997, 270, 711-723.	4.2	43
165	A dimeric state for PRC2. Nucleic Acids Research, 2014, 42, 9236-9248.	14.5	43
166	Inhibition of Telomerase Recruitment and Cancer Cell Death. Journal of Biological Chemistry, 2013, 288, 33171-33180.	3.4	42
167	Visualization of a Tertiary Structural Domain of the Tetrahymena Group I Intron by Electron Microscopy. Journal of Molecular Biology, 1994, 236, 64-71.	4.2	41
168	Organization of highly repeated sequences in mouse main-band DNA. Journal of Molecular Biology, 1976, 100, 227-256.	4.2	40
169	Translocation of an RNA duplex on a ribozyme. Nature Structural and Molecular Biology, 1994, 1, 13-17.	8.2	40
170	Multiple Yeast Genes, Including Paf1 Complex Genes, Affect Telomere Length via Telomerase RNA Abundance. Molecular and Cellular Biology, 2008, 28, 4152-4161.	2.3	40
171	Ribozyme self-replication?. Nature, 1989, 339, 507-508.	27.8	39
172	Conformational Switches Involved in Orchestrating the Successive Steps of Group I RNA Splicing. Biochemistry, 1996, 35, 3754-3763.	2.5	38
173	In vitro selection of RNAs with increased tertiary structure stability. Rna, 1999, 5, 1119-1129.	3.5	38
174	Soluble domains of telomerase reverse transcriptase identified by high-throughput screening. Protein Science, 2005, 14, 2051-2058.	7.6	38
175	Toward predicting self-splicing and protein-facilitated splicing of group I introns. Rna, 2008, 14, 2013-2029.	3.5	38
176	Multiple POT1–TPP1 Proteins Coat and Compact Long Telomeric Single-Stranded DNA. Journal of Molecular Biology, 2011, 410, 10-17.	4.2	38
177	Competition between PRC2.1 and 2.2 subcomplexes regulates PRC2 chromatin occupancy in human stem cells. Molecular Cell, 2021, 81, 488-501.e9.	9.7	38
178	Mechanism of recognition of the 5′ splice site in self-splicing group I introns. Nature, 1986, 322, 86-89.	27.8	36
179	Self-splicing of the Tetrahymena intron from mRNA in mammalian cells. EMBO Journal, 1999, 18, 6491-6500.	7.8	35
180	Different nucleosome spacing in transcribed and non-transcribed regions of the ribosomal RNA gene inTetrahymena thermophila. Nucleic Acids Research, 1983, 11, 2093-2110.	14.5	34

#	Article	IF	CITATIONS
181	C9orf72 and triplet repeat disorder RNAs: G-quadruplex formation, binding to PRC2 and implications for disease mechanisms. Rna, 2019, 25, 935-947.	3.5	34
182	<i>Tetrahymena</i> Telomerase Protein p65 Induces Conformational Changes throughout Telomerase RNA (TER) and Rescues Telomerase Reverse Transcriptase and TER Assembly Mutants. Molecular and Cellular Biology, 2010, 30, 4965-4976.	2.3	33
183	Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
184	A natural ribozyme with $3\hat{a}$ € ² ,5 \hat{a} € ² RNA ligase activity. Nature Chemical Biology, 2009, 5, 97-99.	8.0	32
185	Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP. Rna, 2011, 17, 298-311.	3.5	32
186	3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing. BMC Molecular Biology, 2013, 14, 23.	3.0	32
187	Evolution of Tetrahymena ribozyme mutants with increased structural stability. , 2002, 9, 855-61.		29
188	Evolution of Biological Catalysis: Ribozyme to RNP Enzyme. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 11-16.	1.1	29
189	Selbstspleißen und enzymatische Aktivitäeiner intervenierenden Sequenz der RNA von <i>Tetrahymena</i> (Nobelâ€Vortrag). Angewandte Chemie, 1990, 102, 745-755.	2.0	27
190	Metal Ion Dependence of Active-Site Structure of the Tetrahymena Ribozyme Revealed by Site-Specific Photo-crosslinking. Journal of the American Chemical Society, 1994, 116, 4178-4182.	13.7	27
191	Single-cell imaging reveals unexpected heterogeneity of telomerase reverse transcriptase expression across human cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18488-18497.	7.1	27
192	Rebalancing Teaching and Research. Science, 2003, 299, 165-165.	12.6	26
193	Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p. Nucleic Acids Research, 2009, 37, 354-367.	14.5	26
194	RNA recognition by the DNA end-binding Ku heterodimer. Rna, 2013, 19, 841-851.	3.5	26
195	Disease mutant analysis identifies a novel function of DAXX in telomerase regulation and telomere maintenance. Journal of Cell Science, 2015, 128, 331-41.	2.0	26
196	Structure and Function of Steroid Receptor RNA Activator Protein, the Proposed Partner of SRA Noncoding RNA. Journal of Molecular Biology, 2014, 426, 1766-1785.	4.2	26
197	Reconstitution of a telomeric replicon organized by CST. Nature, 2022, 608, 819-825.	27.8	26
198	Self-catalyzed cyclization of the intervening sequence RNA ofTetrahymena:inhibition by methidiumpropyl-EDTA and localization of the major dye binding sites. Nucleic Acids Research, 1985, 13, 7759-7779.	14.5	25

#	Article	IF	CITATIONS
199	The Euplotes telomerase subunit p43 stimulates enzymatic activity and processivity in vitro. Rna, 2004, 10, 1108-1118.	3.5	25
200	Contributions of the TEL-patch Amino Acid Cluster on TPP1 to Telomeric DNA Synthesis by Human Telomerase. Journal of Molecular Biology, 2015, 427, 1291-1303.	4.2	25
201	Nuclear compartmentalization of TERT mRNA and TUG1 lncRNA is driven by intron retention. Nature Communications, 2021, 12, 3308.	12.8	25
202	Self-splicing and enzymatic cleavage of RNA by a group I intervening sequence. Methods in Enzymology, 1990, 181, 558-569.	1.0	24
203	Mutations at the guanosine-binding site of theTetrahymenaribozyme also affect site-specific hydrolysis. Nucleic Acids Research, 1992, 20, 6613-6619.	14.5	24
204	Catalytic RNA: Structure and Mechanism. Biochemical Society Transactions, 1993, 21, 229-234.	3.4	24
205	In vivo selection of better self-splicing introns in Escherichia coli: The role of the P1 extension helix of the Tetrahymena intron. Rna, 2002, 8, 647-658.	3.5	24
206	RNA finds a simpler way. Nature, 2004, 428, 263-264.	27.8	24
207	DNA-induced dimerization of the single-stranded DNA binding telomeric protein Pot1 from Schizosaccharomyces pombe. Nucleic Acids Research, 2012, 40, 235-244.	14.5	24
208	TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
209	Fostering Innovation and Discovery in Biomedical Research. JAMA - Journal of the American Medical Association, 2005, 294, 1390.	7.4	23
210	Alleleâ€specific proximal promoter hypomethylation of the telomerase reverse transcriptase gene (<i>TERT</i>) associates with <i>TERT</i> expression in multiple cancers. Molecular Oncology, 2020, 14, 2358-2374.	4.6	23
211	Dynamics of human telomerase recruitment depend on template-telomere base pairing. Molecular Biology of the Cell, 2018, 29, 869-880.	2.1	22
212	Self-catalyzed cyclization of the intervening sequence RNA ofTetrahymena:inhibition by intercalating dyes. Nucleic Acids Research, 1985, 13, 7741-7758.	14.5	21
213	Mesenchymal and MAPK Expression Signatures Associate with Telomerase Promoter Mutations in Multiple Cancers. Molecular Cancer Research, 2020, 18, 1050-1062.	3.4	21
214	CST does not evict elongating telomerase but prevents initiation by ssDNA binding. Nucleic Acids Research, 2021, 49, 11653-11665.	14.5	21
215	Yeast telomerase is specialized for C/A-rich RNA templates. Nucleic Acids Research, 2003, 31, 1646-1655.	14.5	20
216	Phosphorylation of theOxytrichatelomere protein: possible cell cycle regulation. Nucleic Acids Research, 1995, 23, 1887-1893.	14.5	19

#	Article	IF	CITATIONS
217	Fishing for fresh catalysts. Nature, 1993, 365, 204-205.	27.8	18
218	Transcribed and non-transcribed regions ofTetrahymenaribosomal gene chromatin have different accessibilities to micrococcal nuclease. Nucleic Acids Research, 1983, 11, 2077-2091.	14.5	16
219	Doing More for Kate. Science, 2005, 310, 1741-1741.	12.6	16
220	In vitro selection of the Naegleria GIR1 ribozyme identifies three base changes that dramatically improve activity. Rna, 1998, 4, 1481-1492.	3.5	15
221	Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme. Rna, 2006, 12, 387-395.	3.5	13
222	RNA World research—still evolving. Rna, 2015, 21, 474-475.	3.5	12
223	ATetrahymenaintron nucleotide connected to the GTP/arginine site. Nucleic Acids Research, 1989, 17, 6969-6981.	14.5	11
224	Bending and looping of long DNA by Polycomb repressive complex 2 revealed by AFM imaging in liquid. Nucleic Acids Research, 2020, 48, 2969-2981.	14.5	11
225	The future of research universities. EMBO Reports, 2007, 8, 804-810.	4.5	10
226	RNase P branches out from RNP to protein: organelle-triggered diversification?: Figure 1 Genes and Development, 2012, 26, 1005-1009.	5.9	10
227	Telomerase and the Chromosome end Replication Problem. Novartis Foundation Symposium, 1997, 211, 20-40.	1.1	10
228	Telomerase in Bladder Cancer: Back to a Better Future?. European Urology, 2014, 65, 370-371.	1.9	9
229	Specificity for 3′,5′-linked substrates in RNA-catalyzed RNA polymerization. Journal of Molecular Evolution, 1989, 29, 480-485.	1.8	8
230	A quantitative study of the flexibility contributed to RNA structures by nicks and single-stranded gaps. Rna, 1998, 4, 1179-1185.	3.5	8
231	Academia and industry: Companies on campus. Nature, 2014, 514, 297-298.	27.8	8
232	In Crystallo Selection to Establish NewÂRNAÂCrystalÂContacts. Structure, 2018, 26, 1275-1283.e3.	3.3	8
233	Fission yeast telosomes: non-canonical histone-containing chromatin structures dependent on shelterin and RNA. Nucleic Acids Research, 2018, 46, 8865-8875.	14.5	7
234	Self-Splicing and Enzymatic Activity of an Intervening Sequence RNA from Tetrahymena. Bioscience Reports, 2004, 24, 362-385.	2.4	6

#	Article	IF	CITATIONS
235	Engineering cis-telomerase RNAs that add telomeric repeats to themselves. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4914-4918.	7.1	6
236	Group I Introns: New Molecular Mechanisms for mRNA Repair. Nature Biotechnology, 1995, 13, 323-326.	17.5	5
237	Managing Your Own Lab. Science, 2004, 304, 1717-1717.	12.6	4
238	How a Chemist Looks at RNA. Angewandte Chemie - International Edition, 2013, 52, 75-78.	13.8	4
239	Targeted mutagenesis in human iPSCs using CRISPR genome-editing tools. Methods, 2021, 191, 44-58.	3.8	4
240	Protein-RNA interaction restricts telomerase from running through the stop sign. Nature Structural and Molecular Biology, 2015, 22, 835-836.	8.2	3
241	RNA in biological condensates. Rna, 2022, 28, 1-2.	3.5	3
242	Self-splicing RNA and an RNA Enzyme in Tetruhymena1. Journal of Protozoology, 1987, 34, 416-417.	0.8	2
243	On the occasion of the 25th anniversary of the discovery of catalytic RNA. Biological Chemistry, 2007, 388, 661-2.	2.5	1
244	Symposium 3: Non-enzymatic biocatalysts in nature and biotechnology. Fresenius' Journal of Analytical Chemistry, 1990, 337, 12-14.	1.5	0
245	INTRODUCTION TO MODELLING OF AN INTACT BIOLOGICAL CELL: STRUCTURAL BIOLOGY, FLUORESCENCE MICROSCOPY AND COMPUTATIONAL METHODS. , 2021, , .		0
246	HHMI's Attention to Wiley's Lab Staff. Science, 2002, 295, 43-43.	12.6	0
247	Always a Teacher, Always a Student. FASEB Journal, 2006, 20, A420.	0.5	Ο
248	Crystal structure of an essential telomeraseâ€specific domain of TERT. FASEB Journal, 2006, 20, A984.	0.5	0
249	A Celebration of Life in the Trenches. Science, 1998, 280, 15-15.	12.6	0
250	Regulation of Monoallelic TERT Expression in Cancer Cells with Wildtype Promoters. FASEB Journal, 2018, 32, 523.1.	0.5	0