
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119174/publications.pdf Version: 2024-02-01

AVEL HIMMELBACH

#	Article	IF	CITATIONS
1	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	6.0	2,424
2	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	13.7	1,365
3	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	6.0	781
4	Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 2019, 51, 885-895.	9.4	576
5	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	13.7	513
6	Relay and control of abscisic acid signaling. Current Opinion in Plant Biology, 2003, 6, 470-479.	3.5	401
7	Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 2019, 51, 319-326.	9.4	322
8	The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588, 284-289.	13.7	314
9	Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO Journal, 2002, 21, 3029-3038.	3.5	309
10	Evolution of the Grain Dispersal System in Barley. Cell, 2015, 162, 527-539.	13.5	265
11	Anchoring and ordering <scp>NGS</scp> contig assemblies by population sequencing (<scp>POPSEQ</scp>). Plant Journal, 2013, 76, 718-727.	2.8	264
12	Barley whole exome capture: a tool for genomic research in the genus <i>Hordeum</i> and beyond. Plant Journal, 2013, 76, 494-505.	2.8	260
13	Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics, 2016, 48, 1024-1030.	9.4	259
14	CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (<i>Brassica napus</i>). Plant Physiology, 2017, 174, 935-942.	2.3	257
15	A Set of Modular Binary Vectors for Transformation of Cereals. Plant Physiology, 2007, 145, 1192-1200.	2.3	205
16	The Multigene Family Encoding Germin-Like Proteins of Barley. Regulation and Function in Basal Host Resistance. Plant Physiology, 2006, 142, 181-192.	2.3	181
17	TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biology, 2019, 20, 284.	3.8	179
18	<i>Six-rowed spike4</i> (<i>Vrs4</i>) controls spikelet determinacy and row-type in barley. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13198-13203.	3.3	140

#	Article	IF	CITATIONS
19	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	9.4	138
20	Mapping-by-sequencing accelerates forward genetics in barley. Genome Biology, 2014, 15, R78.	13.9	131
21	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	2.4	130
22	ABA signal transduction. Current Opinion in Plant Biology, 1998, 1, 412-418.	3.5	129
23	Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics, 2016, 48, 1089-1093.	9.4	122
24	Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6061-6066.	3.3	115
25	BARLEX – the Barley Draft Genome Explorer. Molecular Plant, 2015, 8, 964-966.	3.9	114
26	Unlocking the secondary geneâ€pool of barley with nextâ€generation sequencing. Plant Biotechnology Journal, 2014, 12, 1122-1131.	4.1	111
27	Mapping-by-Sequencing Identifies <i>HvPHYTOCHROME C</i> as a Candidate Gene for the <i>early maturity 5</i> Locus Modulating the Circadian Clock and Photoperiodic Flowering in Barley. Genetics, 2014, 198, 383-396.	1.2	102
28	Promoters of the Barley Germin-Like <i>GER4</i> Gene Cluster Enable Strong Transgene Expression in Response to Pathogen Attack Â. Plant Cell, 2010, 22, 937-952.	3.1	100
29	Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant Journal, 2008, 54, 806-819.	2.8	91
30	Signalling of abscisic acid to regulate plant growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1439-1444.	1.8	89
31	A Distorted Circadian Clock Causes Early Flowering and Temperature-Dependent Variation in Spike Development in the <i>Eps-3Am</i> Mutant of Einkorn Wheat. Genetics, 2014, 196, 1253-1261.	1.2	88
32	Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses. ELife, 2016, 5, .	2.8	86
33	<i>PROTEIN DISULFIDE ISOMERASE LIKE 5-1</i> is a susceptibility factor to plant viruses. Proceedings of the United States of America, 2014, 111, 2104-2109.	3.3	85
34	The Barley <i>Uniculme4</i> Gene Encodes a BLADE-ON-PETIOLE-Like Protein That Controls Tillering and Leaf Patterning. Plant Physiology, 2015, 168, 164-174.	2.3	85
35	A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms Â. Plant Physiology, 2014, 164, 412-423.	2.3	77
36	Expression of the Arabidopsis Mutant <i>abi1</i> Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars. Plant Physiology, 2009, 151, 2110-2119.	2.3	72

#	Article	IF	CITATIONS
37	The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 2022, 606, 113-119.	13.7	70
38	The abi1-1 mutation blocks ABA signaling downstream of cADPR action. Plant Journal, 2003, 34, 307-315.	2.8	69
39	Genes on B chromosomes: Old questions revisited with new tools. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 64-70.	0.9	68
40	A Genome Assembly of the Barley †Transformation Reference' Cultivar Golden Promise. G3: Genes, Genomes, Genetics, 2020, 10, 1823-1827.	0.8	61
41	Interaction between Cauliflower Mosaic Virus Inclusion Body Protein and Capsid Protein: Implications for Viral Assembly. Virology, 1996, 217, 147-157.	1.1	59
42	Bulbosum to Go: A Toolbox to Utilize Hordeum vulgare/bulbosum Introgressions for Breeding and Beyond. Molecular Plant, 2015, 8, 1507-1519.	3.9	58
43	Nonhost Resistance of Barley to Different Fungal Pathogens Is Associated with Largely Distinct, Quantitative Transcriptional Responses Â. Plant Physiology, 2010, 152, 2053-2066.	2.3	56
44	Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biology, 2014, 15, 518.	3.8	52
45	Leaf Variegation and Impaired Chloroplast Development Caused by a Truncated CCT Domain Gene in <i>albostrians</i> Barley. Plant Cell, 2019, 31, 1430-1445.	3.1	52
46	Rye B chromosomes encode a functional Argonauteâ€like protein with <i>inÂvitro</i> slicer activities similar to its A chromosome paralog. New Phytologist, 2017, 213, 916-928.	3.5	51
47	Genetic diversity and relationship between domesticated rye and its wild relatives as revealed through genotypingâ€byâ€sequencing. Evolutionary Applications, 2019, 12, 66-77.	1.5	50
48	SSRâ€seq: Genotyping of microsatellites using nextâ€generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecology and Evolution, 2018, 8, 10817-10833.	0.8	48
49	Global range expansion history of pepper (<i>Capsicum</i> spp.) revealed by over 10,000 genebank accessions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	48
50	Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nature Communications, 2022, 13, 1607.	5.8	48
51	Sequencing of Single Pollen Nuclei Reveals Meiotic Recombination Events at Megabase Resolution and Circumvents Segregation Distortion Caused by Postmeiotic Processes. Frontiers in Plant Science, 2017, 8, 1620.	1.7	46
52	Genome sequences of three <i>Aegilops</i> species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant Journal, 2022, 110, 179-192.	2.8	46
53	Telomere-mediated truncation of barley chromosomes. Chromosoma, 2012, 121, 181-190.	1.0	41
54	A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence. Plant Physiology, 2016, 171, pp.00124.2016.	2.3	41

#	Article	IF	CITATIONS
55	Transgene expression systems in the Triticeae cereals. Journal of Plant Physiology, 2011, 168, 30-44.	1.6	39
56	The INDETERMINATE DOMAIN Protein BROAD LEAF1 Limits Barley Leaf Width by Restricting Lateral Proliferation. Current Biology, 2016, 26, 903-909.	1.8	37
57	COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nature Communications, 2020, 11, 5138.	5.8	37
58	Regulation of gene expression by chromosome 5A during cold hardening in wheat. Molecular Genetics and Genomics, 2010, 283, 351-363.	1.0	31
59	Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nature Communications, 2020, 11, 2764.	5.8	30
60	Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance. Frontiers in Plant Science, 2011, 2, 113.	1.7	27
61	High Resolution Genetic and Physical Mapping of a Major Powdery Mildew Resistance Locus in Barley. Frontiers in Plant Science, 2019, 10, 146.	1.7	27
62	Discovery of multiâ€megabase polymorphic inversions by chromosome conformation capture sequencing in largeâ€genome plant species. Plant Journal, 2018, 96, 1309-1316.	2.8	26
63	In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions. Methods in Molecular Biology, 2019, 1933, 441-472.	0.4	26
64	Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50. Current Biology, 2022, 32, 671-676.e5.	1.8	25
65	Detecting major introgressions in wheat and their putative origins using coverage analysis. Scientific Reports, 2022, 12, 1908.	1.6	23
66	Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL. Theoretical and Applied Genetics, 2018, 131, 1031-1045.	1.8	22
67	Detecting Large Chromosomal Modifications Using Short Read Data From Genotyping-by-Sequencing. Frontiers in Plant Science, 2019, 10, 1133.	1.7	22
68	A catalogue of resistance gene homologs and a chromosomeâ€scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnology Journal, 2022, 20, 1730-1742.	4.1	21
69	Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes. Plant Biotechnology Journal, 2016, 14, 1511-1522.	4.1	20
70	The barley Frost resistance-H2 locus. Functional and Integrative Genomics, 2014, 14, 85-100.	1.4	19
71	Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene. Theoretical and Applied Genetics, 2015, 128, 1343-1357.	1.8	19
72	Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Molecular Ecology, 2018, 27, 4901-4915.	2.0	18

#	Article	IF	CITATIONS
73	A Highâ€Density, Sequenceâ€Enriched Genetic Map of <i>Hordeum bulbosum</i> and Its Collinearity to <i>H. vulgare</i> . Plant Genome, 2017, 10, plantgenome2017.06.0049.	1.6	17
74	De Novo Genome Assembly of the Japanese Wheat Cultivar Norin 61 Highlights Functional Variation in Flowering Time and Fusarium-Resistant Genes in East Asian Genotypes. Plant and Cell Physiology, 2021, 62, 8-27.	1.5	16
75	Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis. Journal of Plant Physiology, 2011, 168, 20-29.	1.6	15
76	The contribution of cis- and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions. Journal of Experimental Botany, 2020, 71, 2573-2584.	2.4	15
77	A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. Plant Communications, 2022, 3, 100317.	3.6	15
78	Mutations in the gene of the Gα subunit of the heterotrimeric G protein are the cause for the brachytic1 semi-dwarf phenotype in barley and applicable for practical breeding. Hereditas, 2018, 155, 10.	0.5	14
79	Chromosome-scale assembly of wild barley accession "OUH602― G3: Genes, Genomes, Genetics, 2021, 11,	0.8	14
80	Exome association analysis sheds light onto leaf rust (<i>Puccinia triticina</i>) resistance genes currently used in wheat breeding (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2020, 18, 1396-1408.	4.1	13
81	Plant Sequence Capture Optimised for Illumina Sequencing. Bio-protocol, 2014, 4, .	0.2	11
82	Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity, 2022, 128, 107-119.	1.2	10
83	Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biology, 2018, 19, 116.	3.8	9
84	Genome-wide identification of loci modifying spike-branching in tetraploid wheat. Theoretical and Applied Genetics, 2021, 134, 1925-1943.	1.8	9
85	Dissecting the Genetic Basis of Lateral and Central Spikelet Development and Grain Traits in Intermedium-Spike Barley (Hordeum vulgare Convar. Intermedium). Plants, 2020, 9, 1655.	1.6	7
86	The barley mutant multiflorus2.b reveals quantitative genetic variation for new spikelet architecture. Theoretical and Applied Genetics, 2022, 135, 571-590.	1.8	7
87	Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly. Bio-protocol, 2018, 8, e2955.	0.2	6
88	Chromosome-scale assembly of barley cv. â€~Haruna Nijo' as a resource for barley genetics. DNA Research, 2022, 29, .	1.5	6
89	Recombination Landscape Divergence Between Populations is Marked by Larger Low-Recombining Regions in Domesticated Rye. Molecular Biology and Evolution, 2022, 39, .	3.5	5
90	Initial Description of the Genome of Aeluropus littoralis, a Halophile Grass. Frontiers in Plant Science, 0, 13, .	1.7	5

#	Article	IF	CITATIONS
91	DEFECTIVE ENDOSPERM-D1 (Dee-D1) is crucial for endosperm development in hexaploid wheat. Communications Biology, 2020, 3, 791.	2.0	3
92	Rye B chromosomes differently influence the expression of A chromosome–encoded genes depending on the host species. Chromosome Research, 2022, 30, 335-349.	1.0	3
93	Quantification of Recombination Rate and Segregation Distortion by Genotyping and Sequencing of Single Pollen Nuclei. Methods in Molecular Biology, 2020, 2061, 281-300.	0.4	1
94	Sixâ€rowed wildâ€growing barleys are hybrids of diverse origins. Plant Journal, 2022, 111, 849-858.	2.8	1
95	Targets of modifying plant growth and development by ABA-mediated signaling. , 2000, , 223-232.		Ο