
Florence Toti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11191260/publications.pdf Version: 2024-02-01

FLODENCE TOTI

#	Article	IF	CITATIONS
1	ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine Nature Cell Biology, 2000, 2, 399-406.	10.3	498
2	Cellular Mechanisms Underlying the Formation of Circulating Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 15-26.	2.4	454
3	Procoagulant Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2594-2604.	2.4	429
4	Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Current Opinion in Hematology, 2004, 11, 156-164.	2.5	282
5	Elevated Levels of Circulating Procoagulant Microparticles in Patients With Paroxysmal Nocturnal Hemoglobinuria and Aplastic Anemia. Blood, 1999, 93, 3451-3456.	1.4	279
6	Microvesicles in vascular homeostasis and diseases. Thrombosis and Haemostasis, 2017, 117, 1296-1316.	3.4	193
7	Procoagulant Membrane Microparticles Correlate with the Severity of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 536-543.	5.6	161
8	Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis. Seminars in Immunopathology, 2011, 33, 469-486.	6.1	133
9	Platelet microparticles and vascular cells interactions: A checkpoint between the haemostatic and thrombotic responses. Platelets, 2008, 19, 9-23.	2.3	128
10	Formation of procoagulant microparticles and properties. Thrombosis Research, 2010, 125, S46-S48.	1.7	125
11	Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Medicine, 2013, 39, 1695-1703.	8.2	114
12	Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: Role of endothelial damage and leukocyte activation. Atherosclerosis, 2009, 204, 636-641.	0.8	112
13	Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity. Circulation, 2017, 135, 280-296.	1.6	105
14	Bench-to-bedside review: Circulating microparticles - a new player in sepsis?. Critical Care, 2010, 14, 236.	5.8	95
15	Cellular damage, platelet activation, and inflammatory response after pulmonary vein isolation: A randomized study comparing radiofrequency ablation with cryoablation. Heart Rhythm, 2012, 9, 189-196.	0.7	92
16	Cellâ€derived microparticles: a new challenge in neuroscience. Journal of Neurochemistry, 2009, 110, 457-468.	3.9	89
17	Evidence of Netosis in Septic Shock-Induced Disseminated Intravascular Coagulation. Shock, 2017, 47, 313-317.	2.1	81
18	Sustained elevated amounts of circulating procoagulant membrane microparticles and soluble GPV after acute myocardial infarction in diabetes mellitus. Thrombosis and Haemostasis, 2004, 91, 345-353.	3.4	75

FLORENCE TOTI

#	Article	IF	CITATIONS
19	Angiotensin IIâ€induced redoxâ€sensitive SGLT1 and 2 expression promotes high glucoseâ€induced endothelial cell senescence. Journal of Cellular and Molecular Medicine, 2020, 24, 2109-2122.	3.6	75
20	The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide. British Journal of Haematology, 1997, 96, 534-542.	2.5	73
21	Aminophospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome: a study using physiologic agonists and local anaesthetics. British Journal of Haematology, 1997, 99, 959-967.	2.5	65
22	Membrane microvesicles: Macromessengers in cancer disease and progression. Thrombosis Research, 2010, 125, S84-S88.	1.7	61
23	Microparticles in endothelial cell and vascular homeostasis: are they really noxious?. Haematologica, 2009, 94, 313-317.	3.5	60
24	Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticleâ€stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovascular Diabetology, 2021, 20, 65.	6.8	59
25	Endothelial Cell Activation Contributes to the Release of Procoagulant Microparticles During Acute Cardiac Allograft Rejection. Journal of Heart and Lung Transplantation, 2008, 27, 38-45.	0.6	52
26	Early Detection of Disseminated Intravascular Coagulation During Septic Shock: A Multicenter Prospective Study. Critical Care Medicine, 2016, 44, e930-e939.	0.9	51
27	Apoptosis in Vascular Disease. Thrombosis and Haemostasis, 1999, 82, 727-735.	3.4	44
28	Significance of Capacitative Ca2+Entry in the Regulation of Phosphatidylserine Expression at the Surface of Stimulated Cellsâ€. Biochemistry, 1999, 38, 10092-10098.	2.5	43
29	Factors influencing the level of circulating procoagulant microparticles in acute pulmonary embolism. Archives of Cardiovascular Diseases, 2010, 103, 394-403.	1.6	35
30	Once versus twice daily injection of enoxaparin for thromboprophylaxis in bariatric surgery: effects on antifactor Xa activity and procoagulant microparticles. A randomized controlled study. Surgery for Obesity and Related Diseases, 2016, 12, 613-621.	1.2	30
31	Procoagulant Microparticles: †Criminal Partners' in Atherothrombosis and Deleterious Cellular Exchanges. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2006, 35, 15-22.	0.3	27
32	Mechanisms of Microparticle Generation: On the Trail of the Mitochondrion!. Seminars in Thrombosis and Hemostasis, 2010, 36, 833-844.	2.7	27
33	The Redox-sensitive Induction of the Local Angiotensin System Promotes Both Premature and Replicative Endothelial Senescence: Preventive Effect of a Standardized <i>Crataegus</i> Extract. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1581-1590.	3.6	26
34	Pharmacological modulation of procoagulant microparticles improves haemodynamic dysfunction during septic shock in rats. Thrombosis and Haemostasis, 2014, 111, 154-164.	3.4	22
35	Atrial Fibrillation Progression Is Associated with Cell Senescence Burden as Determined by p53 and p16 Expression. Journal of Clinical Medicine, 2020, 9, 36.	2.4	21
36	Another Link between Phospholipid Transmembrane Migration and ABC Transporter Gene Family, Inferred from a Rare Inherited Disorder of Phosphatidylserine Externalization. Biochemical and Biophysical Research Communications, 1997, 241, 548-552.	2.1	19

FLORENCE TOTI

#	Article	IF	CITATIONS
37	Lipid emulsions for parenteral nutrition in critical illness. Progress in Lipid Research, 2015, 60, 1-16.	11.6	19
38	Intake of omega-3 formulation EPA:DHA 6:1 by old rats for 2Âweeks improved endothelium-dependent relaxations and normalized the expression level of ACE/AT1R/NADPH oxidase and the formation of ROS in the mesenteric artery. Biochemical Pharmacology, 2020, 173, 113749.	4.4	19
39	Porphyromonas gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Scientific Reports, 2020, 10, 1778.	3.3	19
40	Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis. Journal of Cystic Fibrosis, 2014, 13, 219-226.	0.7	15
41	Do Atrial Differences in Endothelial Damage, Leukocyte and Platelet Activation, or Tissue Factor Activity Contribute to Chamberâ€5pecific Thrombogenic Status in Patients with Atrial Fibrillation?. Journal of Cardiovascular Electrophysiology, 2014, 25, 266-270.	1.7	14
42	Lipid Emulsions Differentially Affect LPSâ€Induced Acute Monocytes Inflammation: In Vitro Effects on Membrane Remodeling and Cell Viability. Lipids, 2014, 49, 1091-1099.	1.7	12
43	Medium-chain Triglyceride Supplementation Exacerbates Peritonitis-Induced Septic Shock in Rats. Shock, 2014, 42, 548-553.	2.1	11
44	An Intravenous Bolus of Epa. Shock, 2016, 46, 549-556.	2.1	11
45	Radiofrequency Catheter Ablation of Atrial Flutter Induces the Release of Platelet and Leukocyteâ€Derived Procoagulant Microparticles and a Prothrombotic State. PACE - Pacing and Clinical Electrophysiology, 2009, 32, 193-200.	1.2	10
46	Significance of membrane microparticles in solid graft and cellular transplantation. Frontiers in Bioscience - Landmark, 2011, 16, 2499.	3.0	10
47	Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets. Journal of Cellular and Molecular Medicine, 2017, 21, 2759-2772.	3.6	9
48	Septic shock as a trigger of arterial stress-induced premature senescence: A new pathway involved in the post sepsis long-term cardiovascular complications. Vascular Pharmacology, 2021, 141, 106922.	2.1	9
49	Significance of neutrophil microparticles in ischaemiaâ€reperfusion: Proâ€inflammatory effectors of endothelial senescence and vascular dysfunction. Journal of Cellular and Molecular Medicine, 2020, 24, 7266-7281.	3.6	8
50	Epithelial-mesenchymal transition and membrane microparticles: Potential implications for bronchiolitis obliterans syndrome after lung transplantation. Transplant Immunology, 2020, 59, 101273.	1.2	3
51	An ABC for Scott syndrome?. Blood, 2005, 106, 396-397.	1.4	2
52	Microparticles: A new insight into lung primary graft dysfunction?. Human Immunology, 2016, 77, 1101-1107.	2.4	2
53	Assessment of plasma microvesicles to monitor pancreatic islet graft dysfunction: Beta cell- and leukocyte-derived microvesicles as specific features in a pilot longitudinal study. American Journal of Transplantation, 2020, 20, 40-51.	4.7	2
54	In Vitro Impact of Pro-Senescent Endothelial Microvesicles on Isolated Pancreatic Rat Islets Function. Transplantation Proceedings, 2021, 53, 1736-1743.	0.6	0