
Sheldon Magder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11190872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Medicine, 2016, 42, 1360-1373.	3.9	352
2	Porcine endotoxemic shock is associated with increased expired nitric oxide. Critical Care Medicine, 1999, 27, 385-393.	0.4	290
3	The Effects of Changes in Ventilation and Cardiac Output on Expired Nitric Oxide. Chest, 1997, 111, 1045-1049.	0.4	258
4	A physical chemical approach to the analysis of acid-base balance in the clinical setting. Journal of Critical Care, 1993, 8, 187-197.	1.0	212
5	Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioperative Medicine (London, England), 2015, 4, 3.	0.6	208
6	Respiratory variations in right atrial pressure predict the response to fluid challenge. Journal of Critical Care, 1992, 7, 76-85.	1.0	172
7	Reactive oxygen species: toxic molecules or spark of life?. Critical Care, 2006, 10, 208.	2.5	163
8	Clinical death and the measurement of stressed vascular volume. Critical Care Medicine, 1998, 26, 1061-1064.	0.4	161
9	Central venous pressure: A useful but not so simple measurement. Critical Care Medicine, 2006, 34, 2224-2227.	0.4	147
10	Adaptations of the Peripheral Circulation to PEEP. The American Review of Respiratory Disease, 1992, 146, 688-693.	2.9	144
11	Clinical Usefulness of Respiratory Variations in Arterial Pressure. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 151-155.	2.5	141
12	The Clinical Role of Central Venous Pressure Measurements. Journal of Intensive Care Medicine, 2007, 22, 44-51.	1.3	114
13	Fluids after cardiac surgery: A pilot study of the use of colloids versus crystalloids*. Critical Care Medicine, 2010, 38, 2117-2124.	0.4	104
14	Central venous pressure monitoring. Current Opinion in Critical Care, 2006, 12, 219-227.	1.6	91
15	How to use central venous pressure measurements. Current Opinion in Critical Care, 2005, 11, 264-270.	1.6	90
16	Bench-to-bedside review: An approach to hemodynamic monitoring - Guyton at the bedside. Critical Care, 2012, 16, 236.	2.5	83
17	Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H794-H806.	1.5	74
18	Low systemic vascular resistance state in patients undergoing cardiopulmonary bypass. Critical Care Medicine, 1999, 27, 1121-1127.	0.4	71

SHELDON MAGDER

#	Article	IF	CITATIONS
19	Cause-specific mortality adjudication in the UPLIFT® COPD trial: Findings and recommendations. Respiratory Medicine, 2012, 106, 515-521.	1.3	70
20	Effectiveness of albumin versus normal saline as a test of volume responsiveness in post-cardiac surgery patients. Journal of Critical Care, 1999, 14, 164-171.	1.0	69
21	Validity of the hepatojugular reflux as a clinical test for congestive heart failure. American Journal of Cardiology, 1983, 52, 1299-1303.	0.7	65
22	Differential expression of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L582-L590.	1.3	56
23	Regulators of G-Protein Signaling (RGS) 1 and 16 Are Induced in Response to Bacterial Lipopolysaccharide and Stimulate c-fos Promoter Expression. Biochemical and Biophysical Research Communications, 1999, 259, 550-556.	1.0	53
24	Perioperative fluid management in kidney transplantation: a black box. Critical Care, 2018, 22, 14.	2.5	51
25	Understanding central venous pressure. Current Opinion in Critical Care, 2015, 21, 369-375.	1.6	50
26	The use of respiratory variations in right atrial pressure to predict the cardiac output response to PEEP. Journal of Critical Care, 2001, 16, 108-114.	1.0	49
27	Fluid status and fluid responsiveness. Current Opinion in Critical Care, 2010, 16, 289-296.	1.6	46
28	Hemodynamic Response to Norepinephrine with and without Inhibition of Nitric Oxide Synthase in Porcine Endotoxemia. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 1987-1993.	2.5	42
29	Practical Approach to Physical-Chemical Acid-Base Management. Stewart at the Bedside. Annals of the American Thoracic Society, 2015, 12, 111-117.	1.5	42
30	Phenylephrine and Tangible Bias. Anesthesia and Analgesia, 2011, 113, 211-213.	1.1	41
31	Role of poly-(ADP-ribose) synthetase in lipopolysaccharide-induced vascular failure and acute lung injury in pigs. Journal of Critical Care, 2000, 15, 73-83.	1.0	37
32	Right Atrial Pressure in the Critically III. Chest, 2017, 151, 908-916.	0.4	37
33	Heart–lung interactions and pulmonary buffering: Lessons from a computational modeling study. Respiratory Physiology and Neurobiology, 2012, 182, 60-70.	0.7	36
34	Circuit factors in the high cardiac output of sepsis. Journal of Critical Care, 1996, 11, 155-166.	1.0	34
35	A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study. Journal of Intensive Care, 2016, 4, 43.	1.3	34
36	Invasive Intravascular Hemodynamic Monitoring: Technical Issues. Critical Care Clinics, 2007, 23, 401-414.	1.0	32

SHELDON MAGDER

#	Article	IF	CITATIONS
37	Long-term general and cardiovascular safety of tiotropium/olodaterol in patients with moderate to very severe chronic obstructive pulmonary disease. Respiratory Medicine, 2017, 122, 58-66.	1.3	30
38	The mechanical effects of contractions on blood flow to the muscle. European Journal of Applied Physiology and Occupational Physiology, 1995, 71, 102-112.	1.2	29
39	One-Year Safety of Olodaterol Once Daily via Respimat® in Patients with GOLD 2–4 Chronic Obstructive Pulmonary Disease: Results of a Pre-Specified Pooled Analysis. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2015, 12, 484-493.	0.7	29
40	Heart-Lung interaction in spontaneous breathing subjects: the basics. Annals of Translational Medicine, 2018, 6, 348-348.	0.7	28
41	Effects of norepinephrine and fluid administration on the selective blood flow distribution in endotoxic shock. Journal of Critical Care, 1988, 3, 32-42.	1.0	26
42	Bench-to-bedside review: Ventilatory abnormalities in sepsis. Critical Care, 2009, 13, 202.	2.5	23
43	Balanced versus unbalanced salt solutions: What difference does it make?. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2014, 28, 235-247.	1.7	23
44	Hemodynamic monitoring in the mechanically ventilated patient. Current Opinion in Critical Care, 2011, 17, 36-42.	1.6	22
45	Is All on the Level? Hemodynamics during Supine versus Prone Ventilation. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1390-1391.	2.5	18
46	Right Ventricular Loading by Lung Inflation during Controlled Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1311-1319.	2.5	18
47	Invasive Hemodynamic Monitoring. Critical Care Clinics, 2015, 31, 67-87.	1.0	14
48	Flow-directed vs. goal-directed strategy for management of hemodynamics. Current Opinion in Critical Care, 2016, 22, 267-273.	1.6	14
49	Further cautions for the use of ventilatory-induced changes in arterial pressures to predict volume responsiveness. Critical Care, 2010, 14, 197.	2.5	13
50	Cardiac output responses in a flow-driven protocol of resuscitation following cardiac surgery. Journal of Critical Care, 2013, 28, 265-269.	1.0	13
51	Pathophysiology of metabolic acid-base disturbances in patients with critical illness. , 1998, , 279-296.		12
52	Active Expiration and the Measurement of Central Venous Pressure. Journal of Intensive Care Medicine, 2018, 33, 430-435.	1.3	10
53	Role of neurosympathetic pathways in the vascular response to sepsis. Journal of Critical Care, 1998, 13, 169-176.	1.0	9
54	Periodicity, time constants of drainage, and the mechanical determinants of peak cardiac output during exercise. Journal of Applied Physiology, 2019, 127, 1611-1619.	1.2	8

Sheldon Magder

#	Article	IF	CITATIONS
55	Endotoxin and the mechanical properties of the canine peripheral circulation. Journal of Critical Care, 1991, 6, 81-88.	1.0	7
56	Current tools for assessing heart function and perfusion adequacy. Current Opinion in Critical Care, 2014, 20, 294-300.	1.6	6
57	The left heart can only be as good as the right heart: determinants of function and dysfunction of the right ventricle. Critical Care and Resuscitation: Journal of the Australasian Academy of Critical Care Medicine, 2007, 9, 344-51.	0.0	6
58	Respiratory Muscle Function in Shock and Infection. Seminars in Respiratory and Critical Care Medicine, 1991, 12, 287-297.	0.8	5
59	Evidence for Constitutive Release of Nitric Oxide in the Venous Circuit of Pigs. Journal of Cardiovascular Pharmacology, 1998, 32, 366-372.	0.8	5
60	Preservation of Renal Blood Flow by the Antioxidant EUK-134 in LPS-Treated Pigs. International Journal of Molecular Sciences, 2015, 16, 6801-6817.	1.8	4
61	Intracellular pH regulation and the acid delusion. Canadian Journal of Physiology and Pharmacology, 2021, 99, 561-576.	0.7	4
62	Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome. Journal of Applied Physiology, 1997, 82, 755-759.	1.2	3
63	Function of the Right Heart. , 2021, , 21-47.		3
64	Is Brachial Artery Peak Velocity Variation Ready for Prime Time?. Chest, 2007, 131, 1279-1281.	0.4	2
65	Physiology of Heart Rate. , 2021, , 87-106.		2
66	Blood pressure regulation. , 0, , 47-55.		0
67	Central Venous Pressure. Lessons From the ICU, 2019, , 223-231.	0.1	Ο
68	Basics of Fluid Physiology. , 2021, , 137-151.		0
69	Cardiogenic Shock Part 1: Epidemiology, Classification, Clinical Presentation, Physiological Process, and Nonmechanical Treatments. , 2021, , 759-791.		Ο
70	Use of Maintenance and Resuscitation Fluids. , 2021, , 669-683.		0
71	Basics of Hemodynamic Measurements. , 2021, , 319-336.		0
72	Pathophysiology of Sepsis and Heart-Lung Interactions: Part 1, Presentation and Mechanisms. , 2021, ,		0

5

#	Article	IF	CITATIONS
73	Pathophysiology of Sepsis and Heart-Lung Interactions: Part 2, Treatment. , 2021, , 849-869.		Ο
74	Acid-Base and Hydrogen Ion. , 2021, , 653-665.		0
75	Pathophysiology of Cardiovascular Failure. , 2006, , 283-299.		Ο
76	Mechanical Limits of Cardiac Output at Maximal Aerobic Exercise. , 0, , .		0