## G Anthony Verboom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11190288/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The importance of nutritional regulation of plant water flux. Oecologia, 2009, 161, 15-24.                                                                                                                                 | 0.9 | 268       |
| 2  | Phylogenetic Relatedness Limits Coâ€occurrence at Fine Spatial Scales: Evidence from the Schoenoid<br>Sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. American Naturalist, 2006,<br>168, 14-27. | 1.0 | 219       |
| 3  | Origin and diversification of the Greater Cape flora: Ancient species repository, hot-bed of recent radiation, or both?. Molecular Phylogenetics and Evolution, 2009, 51, 44-53.                                           | 1.2 | 198       |
| 4  | Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society, 0, 162, 543-557.                        | 0.8 | 195       |
| 5  | Phylogeny of Cyperaceae Based on DNA Sequence Data: Current Progress and Future Prospects.<br>Botanical Review, The, 2009, 75, 2-21.                                                                                       | 1.7 | 169       |
| 6  | Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region.<br>Functional Ecology, 2010, 24, 485-492.                                                                               | 1.7 | 138       |
| 7  | PHYLOGENETICS OF THE GRASS GENUS EHRHARTA: EVIDENCE FOR RADIATION IN THE SUMMER-ARID ZONE OF THE SOUTH AFRICAN CAPE. Evolution; International Journal of Organic Evolution, 2003, 57, 1008-1021.                           | 1.1 | 103       |
| 8  | The origins and diversification of C <sub>4</sub> grasses and savannaâ€adapted ungulates. Global Change Biology, 2009, 15, 2397-2417.                                                                                      | 4.2 | 103       |
| 9  | Nutrient availability moderates transpiration in <i>Ehrharta calycina</i> . New Phytologist, 2008, 179, 1048-1057.                                                                                                         | 3.5 | 102       |
| 10 | Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. Journal of Experimental Botany, 2014, 65, 159-168.                                                                                       | 2.4 | 94        |
| 11 | Testing the adaptive nature of radiation: growth form and life history divergence in the African grass<br>genus <i>Ehrharta</i> (Poaceae: Ehrhartoideae). American Journal of Botany, 2004, 91, 1364-1370.                 | 0.8 | 82        |
| 12 | Phylogenetic ecology of foliar N and P concentrations and N:P ratios across mediterraneanâ€ŧype<br>ecosystems. Global Ecology and Biogeography, 2012, 21, 1147-1156.                                                       | 2.7 | 75        |
| 13 | A novel supermatrix approach improves resolution of phylogenetic relationships in a comprehensive sample of danthonioid grasses. Molecular Phylogenetics and Evolution, 2008, 48, 1106-1119.                               | 1.2 | 64        |
| 14 | A Generic Classification of the Danthonioideae (Poaceae) <sup>1</sup> . Annals of the Missouri<br>Botanical Garden, 2010, 97, 306-364.                                                                                     | 1.3 | 53        |
| 15 | Does phosphate acquisition constrain legume persistence in the fynbos of the Cape Floristic Region?.<br>Plant and Soil, 2010, 334, 33-46.                                                                                  | 1.8 | 51        |
| 16 | Topography as a driver of diversification in the <scp>C</scp> ape <scp>F</scp> loristic<br><scp>R</scp> egion of <scp>S</scp> outh <scp>A</scp> frica. New Phytologist, 2015, 207, 368-376.                                | 3.5 | 48        |
| 17 | Dated Plant Phylogenies Resolve Neogene Climate and Landscape Evolution in the Cape Floristic<br>Region. PLoS ONE, 2015, 10, e0137847.                                                                                     | 1.1 | 39        |
| 18 | Diversification of C <sub>4</sub> grasses (Poaceae) does not coincide with their ecological dominance. American Journal of Botany, 2014, 101, 300-307.                                                                     | 0.8 | 37        |

G ANTHONY VERBOOM

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere. American Journal of Botany, 2013, 100, 2494-2508.                                                     | 0.8 | 36        |
| 20 | The Evolution of Regional Species Richness: The History of the Southern African Flora. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 393-412.                                                | 3.8 | 36        |
| 21 | Vegetation types of the Greater Cape Floristic Region. , 2014, , 1-25.                                                                                                                                         |     | 36        |
| 22 | Topography as a driver of cryptic speciation in the high-elevation cape sedge Tetraria triangularis<br>(Boeck.) C. B. Clarke (Cyperaceae: Schoeneae). Molecular Phylogenetics and Evolution, 2014, 77, 96-109. | 1.2 | 31        |
| 23 | A phylogeny of the schoenoid sedges (Cyperaceae: Schoeneae) based on plastid DNA sequences, with special reference to the genera found in Africa. Molecular Phylogenetics and Evolution, 2006, 38, 79-89.      | 1.2 | 30        |
| 24 | Phylogenetics and biogeography of the parasitic genus <i>Thesium</i> L. (Santalaceae), with an emphasis on the Cape of South Africa. Botanical Journal of the Linnean Society, 2010, 162, 435-452.             | 0.8 | 29        |
| 25 | Measures of biologically relevant environmental heterogeneity improve prediction of regional plant species richness. Journal of Biogeography, 2017, 44, 579-591.                                               | 1.4 | 29        |
| 26 | Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.<br>American Naturalist, 2017, 189, 684-699.                                                              | 1.0 | 29        |
| 27 | Cenozoic assembly of the Greater Cape flora. , 2014, , 93-118.                                                                                                                                                 |     | 27        |
| 28 | The evolutionary history of <i>Melianthus</i> (Melianthaceae). American Journal of Botany, 2006, 93, 1052-1064.                                                                                                | 0.8 | 26        |
| 29 | Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?. Oecologia, 2014, 175, 1129-1142.                                                              | 0.9 | 26        |
| 30 | Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus. BMC Evolutionary Biology, 2014, 14, 27.                          | 3.2 | 25        |
| 31 | Plant size: a key determinant of diversification?. New Phytologist, 2017, 216, 24-31.                                                                                                                          | 3.5 | 25        |
| 32 | Does a tradeoff between trait plasticity and resource conservatism contribute to the maintenance of alternative stable states?. New Phytologist, 2019, 223, 1809-1819.                                         | 3.5 | 22        |
| 33 | Speciation and extinction in the Greater Cape Floristic Region. , 2014, , 119-141.                                                                                                                             |     | 22        |
| 34 | Legume seeders of the Cape Floristic Region inhabit more fertile soils than congeneric resprouters—sometimes. Plant Ecology, 2011, 212, 1979-1989.                                                             | 0.7 | 20        |
| 35 | Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora. BMC Evolutionary Biology, 2011, 11, 39.                                                                                | 3.2 | 17        |
| 36 | Extreme hydroclimate response gradients within the western Cape Floristic region of South Africa since the Last Glacial Maximum. Quaternary Science Reviews, 2019, 219, 297-307.                               | 1.4 | 17        |

G ANTHONY VERBOOM

| #  | Article                                                                                                                                                                                                                                             | IF         | CITATIONS                  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|
| 37 | Environmental correlates of biomeâ€level floristic turnover in South Africa. Journal of Biogeography,<br>2017, 44, 1745-1757.                                                                                                                       | 1.4        | 16                         |
| 38 | Ecology limits the diversity of the Cape flora: Phylogenetics and diversification of the genus Tetraria.<br>Molecular Phylogenetics and Evolution, 2014, 72, 61-70.                                                                                 | 1.2        | 15                         |
| 39 | An infrageneric classification of <i>Thesium</i> (Santalaceae) based on molecular phylogenetic data.<br>Taxon, 2020, 69, 100-123.                                                                                                                   | 0.4        | 13                         |
| 40 | Haustorial Synergids: An Important Character in the Systematics of Danthonioid Grasses<br>(Arundinoideae: Poaceae)?. American Journal of Botany, 1994, 81, 1601.                                                                                    | 0.8        | 13                         |
| 41 | Diversification rate vs. diversification density: Decoupled consequences of plant height for diversification of Alooideae in time and space. PLoS ONE, 2020, 15, e0233597.                                                                          | 1.1        | 10                         |
| 42 | A reâ€evaluation of species limits in Chaetobromus (Danthonieae: Poaceae). Nordic Journal of Botany,<br>1998, 18, 57-77.                                                                                                                            | 0.2        | 9                          |
| 43 | Molecular phylogeny of AfricanRytidosperma–affiliated danthonioid grasses reveals generic polyphyly and convergent evolution in spikelet morphology. Taxon, 2006, 55, 337-348.                                                                      | 0.4        | 9                          |
| 44 | Species Selection Regime and Phylogenetic Tree Shape. Systematic Biology, 2020, 69, 774-794.                                                                                                                                                        | 2.7        | 9                          |
| 45 | Anomalous capitulum structure and monoecy may confer flexibility in sex allocation and life history<br>evolution in the <i>Ifloga</i> lineage of paper daisies (Compositae: Gnaphalieae). American Journal of<br>Botany, 2011, 98, 1113-1127.       | 0.8        | 8                          |
| 46 | Evolutionary history of the arid climateâ€adapted <i>Helichrysum</i> (Asteraceae: Gnaphalieae): Cape<br>origin and association between annual lifeâ€history and low chromosome numbers. Journal of<br>Systematics and Evolution, 2019, 57, 468-487. | 1.6        | 7                          |
| 47 | The roles of climate and soil nutrients in shaping the life histories of grasses native to the Cape<br>Floristic Region. Plant and Soil, 2012, 355, 323-340.                                                                                        | 1.8        | 6                          |
| 48 | Environmental heterogeneity explains contrasting plant species richness between the South African<br>Cape and southwestern Australia. Journal of Biogeography, 2021, 48, 1875-1888.                                                                 | 1.4        | 6                          |
| 49 | Speciesâ€level phylogenetic analysis in the Relhania clade of "everlastings―and a new generic treatment<br>of species previously assigned to <i>Macowania</i> and <i>Arrowsmithia</i> (Asteraceae:) Tj ETQq1 1 0.784314                             | 4 rgB4 ∕Ov | erløck 10 T <sup>e</sup> 5 |
| 50 | Niche specificity influences gene flow across fineâ€scale habitat mosaics in Succulent Karoo plants.<br>Molecular Ecology, 2021, 30, 175-192.                                                                                                       | 2.0        | 3                          |
| 51 | The role of shade in maintaining alternative stable states between open―and closed anopy vegetation.<br>Journal of Ecology, 2021, 109, 3835-3848.                                                                                                   | 1.9        | 3                          |