Linda Breeden

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1118921/publications.pdf
Version: 2024-02-01

1 The budding yeast transition to quiescence. Yeast, 2021, 38, 30-38. 0.8 12A common strategy for initiating the transition from proliferation to quiescence. Current Genetics,2017, 63, 179-186.Xbpl Directs Global Repression of Budding Yeast Transcription during the Transition to Quiescence5 and Is Important for the Longevity and Reversibility of the Quiescent State. PLoS Genetics, 2013, 9,e1003854.1.5
6 Periodic Transcription: A Cycle within a Cycle. Current Biology, 2003, 13, R31-R38.1.8124
$7 \quad$ Cyclin transcription: Timing is everything. Current Biology, 2000, 10, R586-R588. 1.8 568 CLN1 and Its Repression by Xbp1 Are Important for Efficient Sporulation in Budding Yeast. Molecularand Cellular Biology, 2000, 20, 478-487.
9 The MSN1 and NHP6A Genes Suppress SWI6 Defects in Saccharomyces cerevisiae. Genetics, 1999, 151,1.221
SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes inbudding yeast. Nature, 1992, 357, 505-508.
11 Molecular and cell biology of yeasts. Trends in Genetics, 1989, 5, 388.
$2.9 \quad 0$
12 Cell cycle-regulated promoters in budding yeast. Trends in Genetics, 1988, 4, 249-253.2.925
The bases of the tRNA anticodon loop are independent by genetic criteria. Nucleic Acids Research, 1987,15, 4669-4686.
$6.5 \quad 7$14 Cell cycle control of the yeast HO gene: Cis- and Trans-acting regulators. Cell, 1987, 48, 389-397.13.540715 Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of13.7373Drosophila. Nature, 1987, 329, 651-654.Sexist ads. Nature, 1986, 321, 106-106.

